
Apache Wink User Guide

Software Version: 0.1

The Apache Wink User Guide document is a broad scope

document that provides detailed information about the Apache

Wink 0.1 design and implementation.

Apache Wink 0.1 User Guide

2

Table of Contents

Apache Wink User Guide... 1

Table of Contents ... 2

List of Tables ... 8

1. Introduction .. 9

1.1.1. Important Note ... 9

1.2. Target Audience .. 10

1.3. JAX-RS Compliancy .. 10

2. Apache Wink Architecture ... 11

2.1. Wink Runtime Architecture Overview .. 11

2.2. Request Processor ... 12

2.3. Deployment Configuration .. 13

2.3.1. Customization ... 13

2.4. Handler Chains ... 15

2.5. Registries .. 15

2.5.1. Resources Registry .. 16

2.5.2. Providers Registry... 17

3. Registration and Configuration ... 18

3.1. Simple Application .. 18

3.1.1. Specifying the Simple Application File Location .. 19

3.2. Wink Application... 19

 3

3.3. Dynamic Resources ... 20

3.3.1. Motivation ... 20

3.3.2. Usage .. 21

3.3.3. Scope ... 21

3.4. Priorities.. 22

3.4.1. Resource Priorities .. 22

3.4.2. Provider Priorities... 22

3.5. Properties .. 23

3.5.1. Custom Properties File Definition .. 25

3.6. Runtime Registration .. 26

3.7. Media-Type Mapping .. 26

3.7.1. Customizing Mappings ... 27

3.8. Alternative Shortcuts .. 27

3.8.1. Customizing Shortcuts .. 28

4. Link Builders ... 29

4.1. Link Builders Overview .. 29

4.2. The “alt” Query Parameter ... 29

4.3. System Links Builder .. 30

4.3.1. Example .. 30

4.4. Single Link Builder ... 31

4.5. Generating Absolute or Relative Links ... 31

5. Assets .. 32

5.1. Assets Overview .. 32

5.2. Lifecycle... 34

5.2.1. Response Entity Asset .. 34

5.2.2. Request Entity Asset .. 34

Apache Wink 0.1 User Guide

4

5.3. Asset Entity Methods .. 35

5.3.1. Entity Producing Methods .. 35

5.3.2. Entity Consuming Methods .. 35

5.4. Parameters .. 35

5.5. Return Type .. 35

5.6. Exceptions ... 36

5.7. Annotation Inheritance ... 36

5.8. Entity Method Matching ... 36

5.8.1. Request Entity Matching .. 37

5.8.2. Response Entity Matching .. 37

5.9. Asset Example ... 38

6. Providers .. 41

6.1. Scoping .. 41

6.1.1. Prototype Example .. 41

6.1.2. Singleton Example 1 ... 42

6.1.3. Singleton Example 2 ... 42

6.2. Priority .. 42

6.3. Out-of-the-Box Implementations .. 43

6.3.1. Atom Providers ... 43

6.3.2. APP Providers ... 45

6.3.3. OpenSearch Provider .. 46

6.3.4. Json Providers ... 47

6.3.5. Asset Provider ... 48

6.3.6. HTML Providers ... 49

6.3.7. CSV Providers ... 50

 5

7. Annotations .. 51

7.1. @Workspace Annotation ... 51

7.1.1. @Workspace Annotation Example .. 52

7.2. @Asset Annotation .. 54

7.3. @Scope Annotation .. 55

7.3.1. Resource Example ... 55

7.3.2. Provider Example ... 56

7.4. @Parent Annotation .. 56

8. Resource Matching - Continued Search 58

8.1. Resource Matching Overview .. 58

8.2. Configuration .. 59

9. Data Models .. 60

9.1. JAXB ... 60

9.2. JSON ... 60

9.3. Syndication .. 60

9.4. Atom .. 60

9.5. Atom Publishing Protocol (APP) ... 61

9.6. Comma Separated Values (CSV) .. 61

9.7. OpenSearch ... 61

10. APP Service Document ... 62

10.1. Enabling the APP Service Document Auto Generation .. 62

10.2. Adding Resources to APP Service Document .. 62

10.2.1. Example .. 63

10.3. APP Service Document HTML Styling ... 63

10.4. Implementation ... 64

Apache Wink 0.1 User Guide

6

11. Spring Integration ... 65

11.1. Spring Registration ... 66

11.1.1. Spring Context Loading .. 66

11.1.2. Registering Resources and Providers ... 66

11.2. Custom Properties File Definition .. 68

11.3. Customizing Media-Type Mappings ... 69

11.4. Customizing Alternative Shortcuts... 71

11.4.1. External Properties File ... 71

11.4.2. Spring Context File ... 72

12. WebDAV Extension ... 73

12.1. WebDAV Data Model .. 73

12.2. WebDAV Classes ... 73

12.2.1. WebDAVModelHelper ... 73

12.2.2. WebDAVResponseBuilder... 73

12.3. Resource Method Definition .. 74

12.4. Creating a Multistatus Response .. 74

12.4.1. Using WebDAVResponseBuilder .. 74

12.4.2. WebDAVResponseBuilder Example ... 75

12.4.3. Manual Creation ... 75

13. Handler Chains .. 76

13.1. Handlers .. 76

13.2. Message Context ... 77

13.3. Request Handler Chain ... 77

13.3.1. System Request Handlers ... 78

13.3.2. User Request Handlers ... 79

13.4. Response Handler Chain... 79

 7

13.4.1. System Response Handlers ... 79

13.4.2. User Response Handlers ... 80

13.5. Error Handler Chain ... 80

13.5.1. System Error Handlers ... 80

13.5.2. User Error Handlers ... 81

13.6. Request Processing.. 82

14. Wink Client .. 83

14.1. This chapter contains the following sections .. 83

14.2. Wink Client Overview ... 83

14.4. Dependencies... 84

14.5. Main Features ... 85

14.6. High Level Architecture Overview .. 86

14.7. Getting Started with the Wink Client .. 87

14.7.1. GET Request ... 87

14.7.2. POST Request ... 88

14.7.3. POST Atom Request ... 88

14.7.4. Using ClientResponse ... 89

14.8. Client Configuration ... 89

14.8.1. Important Note ... 89

14.8.2. Handler Configuration .. 91

14.8.3. Apache Http Client Configuration .. 92

14.8.4. Custom Provider Configuration .. 92

14.9. Client Handlers ... 94

14.9.1. Custom Handlers .. 94

14.9.2. Custom Handler Implementation ... 95

14.9.3. Input and Output Stream Adapters ... 95

14.9.4. Stream Adapters Example .. 96

Apache Wink 0.1 User Guide

8

List of Tables

Table 1: Deployment Configuration Customizable Methods ... 14

Table 2: Wink Customization Properties ... 23

Table 3: Predefined Mappings ... 27

Table 4: Predefined Shortcuts .. 28

Table 5: AtomFeedProvider ... 43

Table 6: AtomFeedSyndFeedProvider ... 43

Table 7: AtomFeedJAXBElementProvider .. 44

Table 8: AtomEntryProvider .. 44

Table 9: AtomEntrySyndEntryProvider .. 44

Table 10: AtomEntryJAXBElementProvider ... 45

Table 11: AppServiceProvider .. 45

Table 12: AppCategoriesProvider .. 45

Table 13: CategoriesProvider ... 46

Table 14: OpenSearchDescriptionProvider .. 46

Table 15: JsonProvider... 47

Table 16: JsonJAXBProvider ... 47

Table 17: JsonSyndEntryProvider ... 47

Table 18: JsonSyndFeedProvider ... 48

Table 19: AssetProvider ... 48

Table 20: HtmlProvider.. 49

Table 21: HtmlSyndEntryProvider .. 49

Table 22: HtmlSyndFeedProvid ... 49

Table 23: CsvSerializerProvider .. 50

Table 24: CsvDeserializerProvider... 50

Table 25: @Workspace Annotation Specification ... 51

Table 26: @Asset Annotation Specification .. 54

Table 27: @Scope Annotation Specification ... 55

Table 28: @Parent Annotation Specification .. 56

Table 29: Request Handlers ... 78

Table 30: Response Handlers ... 79

Table 31: Error Handlers ... 81

 9

1. Introduction

The purpose of this document is to provide detailed information about Wink

and describe the additional features that the Wink runtime provides in

addition to the JAX-RS Java API for REST Web Service specification.

In addition to the features description, this document also provides information

regarding implementation specific issues.

This document provides the developer with a rudimentary understanding of the

Wink implementation in order to highlight the underlying concepts and

precepts that make up the framework to create a basis for understanding,

cooperation and open development of Wink.

1.1.1. Important Note

This User Guide is a Preliminary Draft

This document a preliminary draft and is subject to change in

future a release.

Apache Wink 0.1 User Guide

10

1.2. Target Audience

In order to understand the contents of this document the reader is required to

have read the JAX-RS v1.0 specification and have a rudimentary

understanding of the specification and the terminology used to describe the

feature set.

For more information on the JAX-RS functionality, refer to the JAX-RS

specification document, available at the following location:

http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html

1.3. JAX-RS Compliancy

Apache Wink 0.1 is a complete and TCK compliant implementation of the JAX-

RS v1.0 specification.

http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html

 11

2. Apache Wink Architecture

The following chapter describes the basic concepts and building blocks of Wink

and explains the high-level architecture of the Wink runtime.

2.1. Wink Runtime Architecture Overview

The Wink runtime is deployed on a JEE environment and is configured by

defining the RestServlet in the web.xml file of the application. This servlet is

the entry point of all the Http requests targeted for web services, and passes

the request and response instances to the Wink engine for processing.

Figure 1: Request Processor Architecture

The above diagram illustrates the core components of the Wink runtime. The

Wink engine is the RequestProcessor. It builds an instance of a

MessageContext with all of the required information for the request and

passes it through the engine handler chains. The handler chains are

Apache Wink 0.1 User Guide

12

responsible for serving the request, invoking the required resource method and

finally for generating a response.

In case of an error, the RequestProcessor invokes the Error chain with the

generated exception for producing the appropriate response.

The Wink runtime maintains providers and resources in two registries, the

Providers Registry and the Resource Registry utilizing them during

request processing.

2.2. Request Processor

The RequestProcessor is the Wink engine that is initialized by the

RestServlet and is populated with an instance of a

DeploymentConfiguration.

When a request is passed to the handleRequest() method of the

RequestProcessor, a new instance of a MessageContext is created.

The MessageContext contains all of the information that is required for the

Wink runtime to handle the request. The RequestProcessor first runs the

Request Handler Chain to invoke the resource method and then the

Response Handler Chain to produce the response.

If an exception occurs during any stage of the request processing, the

RequestProcessor invokes the Error Handler Chain for processing the

exception.

 13

2.3. Deployment Configuration

The Wink runtime is initialized with an instance of a

DeploymentConfiguration. The Deployment Configuration holds the

runtime configuration, including the handler chains, registries and

configuration properties.

The Deployment Configuration is initialized with an instance of a JAX-RS

Application used for obtaining user resources and providers.

2.3.1. Customization

The Deployment Configuration is customized by extending the

DeplymentConfiguration class, overriding specific methods and specifying the

new class in the web.xml file of the application.

In order to specify a different Deployment Configuration class instead of the

default Deployment Configuration, the value of the

deploymentConfiguration init parameter must be set to be the fully

qualified name of the customized configuration class.

<servlet>

 <servlet-name>restSdkService</servlet-name>

 <servlet-class>

 org.apache.wink.server.internal.servlet.RestServlet

 </servlet-class>

 <init-param>

 <param-name>deploymentConfiguration</param-name>

 <param-value>org.apache.example.MyDeploymentConfig</param-value>

 </init-param>

</servlet>

The following table details the customizable methods of the

DeploymentConfiguration class.

Apache Wink 0.1 User Guide

14

Deployment Configuration

Table 1: Deployment Configuration Customizable Methods

Method Description

initAlternateShortcutMap Initializes the AlternateShortcutMap.

Refer to section 3.8

initMediaTypeMapper Initializes the MediaTypeMapper.

Refer to section 3.7

initRequestUserHandlers Return a list of User Handler instances to

embed in the Request chain.

Refer to section 13.3

initResponseUserHandlers Return a list of User Handler instances to

embed in the Response chain.

Refer to section 13.4

initErrorUserHandlers Return a list of User Handler instances to

embed in the Error chain.

Refer to section 13.5

 15

2.4. Handler Chains

The handler chain pattern is used by the Wink runtime for implementing the

core functionalities.

There are three handler chains utilized by the Wink runtime:

 RequestHandlersChain

 ResponseHandlersChain

 ErrorHandlersChain

Refer to chapter 13 for more information on Handler Chains.

2.5. Registries

The Wink runtime utilizes two registries for maintaining the JAX-RS resources

and providers. Both registries maintain their elements in a sorted state

according to the JAX-RS specification for increasing performance during

request processing. In addition to the JAX-RS specification sorting, Wink

supports the prioritization of resources and providers.

Refer to chapter 3, section 3.4 for more information on Priorities.

Apache Wink 0.1 User Guide

16

2.5.1. Resources Registry

Figure 2: Resource Registry

The resources registry maintains all of the root resources in the form of

Resource Records.

A Resource Record holds the following:

 URI Template Processor – represents a URI template associated with a

resource. Used during the resource matching process.

 Resource Metadata – holds the resource metadata collected from the

resource annotations.

 Sub-Resource Records – records of all the sub-resources (methods and

locators) collected from the sub-resource annotations.

 Resource Factory – a factory that retrieves an instance of the resource in

accordance to the creation method defined for the resource. Possible

creation methods include:

— singleton

— prototype

— spring configuration

— user customizable

 17

2.5.2. Providers Registry

The providers registry maintains of all of the system and user providers and

manages them in an efficient way.

Apache Wink 0.1 User Guide

18

3. Registration and Configuration

Wink provides several methods for registering resources and providers. This

chapter describes registration methods and Wink configuration options.

3.1. Simple Application

Wink provides the SimpleWinkApplication class in order to support the

loading of resources and providers through a simple text file that contains a list

of fully qualified class names of the resource and provider classes.

Each line contains a single fully qualified class name that is either a resource

or a provider. Empty lines and lines that begin with a number sign (#) are

permitted and ignored.

Providers

com.example.MyXmlProvider

com.example.MyJSONProvider

Resources

com.example.FooResource

com.example.BarResource

 19

3.1.1. Specifying the Simple Application File Location

The path to a simple application file is configured via the

applicationConfigLocation init-param in the web.xml file. It is possible to

specify multiple files by separating them with a semicolon.

<servlet>

 <servlet-name>restSdkService</servlet-name>

 <servlet-class>

 org.apache.wink.server.internal.servlet.RestServlet

 </servlet-class>

 <init-param>

 <param-name>applicationConfigLocation</param-name>

 <param-value>/WEB-INF/providers;/WEB-INF/resources</param-value>

 </init-param>

</servlet>

3.2. Wink Application

Wink extends the javax.ws.rs.core.Application class with the

org.apache.wink.common.WinkApplication class in order to provide the

Dynamic Resources and the Priorities functionality.

Refer to chapter 3, sections 3.3 and 3.4 for more information on Dynamic

Resources and Priorities.

An application may provide an instance of WinkApplication to the Wink

runtime as specified by the JAX-RS specification.

Apache Wink 0.1 User Guide

20

3.3. Dynamic Resources

Dynamic Resources enable the binding of a Resource class to a URI path

during runtime instead of by using the @Path annotation. A dynamic resource

must implement the org.apache.wink.server.DynamicResource interface and

must not be annotated with the @Path annotation.

3.3.1. Motivation

A Dynamic Resource is useful for situations where a resource class must be

bound to multiple paths, for example, a sorting resource:

public class SortingResource<E extends Comparable<? super E>> {

 private List<E> list;

 @POST

 public void sort() {

 Collections.sort(list);

 }

 public void setList(List<E> list) {

 this.list = list;

 }

 public List<E> getList() {

 return list;

 }

}

In this example, the SortingResource class can sort any list. If the application

manages a library of books and exposes the following resource paths, then the

SortingResource class can be used for the implementation of all these resource

paths, assuming that it could be bound to more than one path.

/sort-books

/sort-authors

/sort-titles

 21

A dynamic resource is also useful for situations where the resource path is

unknown during development, and is only known during the application

startup.

3.3.2. Usage

A Dynamic Resource is a resource class that implements the

org.apache.wink.server.DynamicResource interface or extends the

org.apache.wink.server.AbstractDynamicResource convenience class.

A Dynamic Resource is not registered in Wink through the

Application#getClasses() method or the Application#getSignletons() method,

since the same class can be used for multiple resources.

In order to register Dynamic Resources in the system, the

WinkApplication#getInstances()method must be used.

Refer to chapter 3, section 3.2 for more information about Wink

Application.

3.3.3. Scope

The scope of a Dynamic Resource is limited to singleton as it is initialized

prior to its registration, and the system does not have enough information to

create it in runtime. This limitation is irrelevant when working with Spring.

Refer to chapter 11 for more information about Spring Integration.

Apache Wink 0.1 User Guide

22

3.4. Priorities

Although JAX-RS defines the algorithm for searching for resources and

providers, Wink extends this algorithm by providing the ability to specify

priorities on them. This is achieved by enabling the registration of multiple

Application instances with different priorities, rendering the order of their

registration irrelevant as long as they have different priorities.

In order to register a prioritized Application, it is necessary to register an

instance of a WinkApplication class.

Priority values range between 0 and 1. In the event that the priority was not

specified, a default priority of 0.5 is used.

3.4.1. Resource Priorities

Priorities on resources are useful in situations where an application registers

core resources bound to paths, and allows extensions to register resources on

the same paths in order to override the core resources.

The Wink runtime first sorts the resources based on their priority and then

based on the JAX-RS specification, thus if two resources have the same path,

the one with higher priority is invoked.

3.4.2. Provider Priorities

JAX-RS requires that application-provided providers be used in preference to

implementation pre-packaged providers. Wink extends this requirement by

allowing applications to specify a priority for providers.

The Wink runtime initially sorts the matching providers according to the JAX-

RS specification, and uses the priority as the last sorting key for providers of

equal standing.

If two providers have the same priority, the order in which they are registered

determines their priority such that the latest addition receives the highest

priority.

In order to meet the JAX-RS requirements, the pre-packages providers are

registered using a priority of 0.1.

 23

3.5. Properties

Wink provides a properties file in order to enable simple customizations. By

default, Wink predefines default values for all possible properties.

Customization Properties

Table 2: Wink Customization Properties

Property Name Description Default

Value

Ref

wink.http.uri URI that is used by

the Link Builders in

case of HTTP

Use the URI

from the

request.

chapter 4

wink.https.uri URI used by the Link

Builders in case of

HTTPS.

Use the URI

from the

request.

chapter 4

wink.context.uri Context path used by

the Link Builders.

Use the

context path

from the

request.

chapter 4

wink.defaultUrisRela

tive

Indicates if URIs

generated by the Link

Builders are absolute

or relative. Valid

values: true or false

true – links

will be

relative.

chapter 4

Apache Wink 0.1 User Guide

24

wink.addAltParam Indicates if the “alt”

query parameter

should be added to

URIs generated by

the Link Builders.

Valid values are:

true, false.

true – add

the alt query

parameter

chapter 4

wink.searchPolicyCon

tinuedSearch

Indicates if continues

search is enabled.

Valid values: true,

false

false –

continued

search is

disabled.

chapter 8

wink.rootResource Indicates if a root

resource with Service

Document generation

capabilities should be

added.

Valid values are:

none, atom,

atom+html

atom+html –

atom and

HTML

Service

Document

generation

capabilities

chapter 10

wink.serviceDocumen

tCssPath

Defines path to a css

file that is used in

the HTML Service

Document

generation. Relevant

only if HTML Service

Document is defined.

No css file

defined.

chapter 10

 25

3.5.1. Custom Properties File Definition

In order to provide a custom properties file, the application should define the

propertiesLocation init-param in the Wink Servlet definition.

<servlet>

 <servlet-name>restSdkService</servlet-name>

 <servlet-class>

 org.apache.wink.server.internal.servlet.RestServlet

 </servlet-class>

 <init-param>

 <param-name>propertiesLocation</param-name>

 <param-value>/WEB-INF/configuration.properties</param-value>

 </init-param>

 <init-param>

 <param-name>applicationConfigLocation</param-name>

 <param-value>/WEB-INF/application</param-value>

 </init-param>

 <load-on-startup>0</load-on-startup>

</servlet>

Apache Wink 0.1 User Guide

26

3.6. Runtime Registration

Wink provides several APIs for Runtime Registration. The APIs appear in the

org.apache.wink.server.utils.RegistrationUtils class.

The most important method is the one that registers an instance of the

javax.ws.rs.core.Application class

static void registerApplication(Application application, ServletContext

servletContext)

Note

Double Registration

Registration is ignored and a warning is printed to the log if the

same instance is registered more than once.

3.7. Media-Type Mapping

It is sometimes necessary to override the Content-Type response header based

on the client user agent. For example, the Firefox browser cannot handle the

application/atom+xml media type for Atom content, unless it is defined as a

text/xml.

Wink provides a set of predefined Media-Type mappings for use in such cases

by supplying the MediaTypeMapper class. Applications may extend or

override the MediaTypeMapper class to define additional mappings.

 27

Mappings

Table 3: Predefined Mappings

User Agent Content-Type Map To

Mozilla/ application/atom+xml text/xml

Mozilla/ application/atomsvc+xml text/xml

Mozilla/ application/opensearchdescription+xml text/xml

3.7.1. Customizing Mappings

In order to customize these mappings the application should create an instance

of a org.apache.wink.server.internal.MediaTypeMapper class and set it on the

DeploymentConfiguration instance.

Refer to chapter 2, section 2.3.1 for more information on Customizing the

Default Deployment Configuration.

3.8. Alternative Shortcuts

Clients specify the requested media type by setting the Http Accept header.

Wink provides an alternate method for specifying the requested media type via

use of the “alt” request parameter. This functionality is useful for situations

where the client has little affect on the Accept header, for example when

requesting a resource using a browser.

A request to “/entry?alt=application/xml” specifies that the requested response

media type is application/xml.

Wink provides a shortcut mechanism for specifying the media type of the alt

query parameter and provides a predefined set of shortcuts for common media

types.

Apache Wink 0.1 User Guide

28

Shortcuts

Table 4: Predefined Shortcuts

Shortcut Media type

json text/javascript

atom application/atom+xml

xml application/xml

text text/plain

html text/html

csv text/csv

opensearch application/opensearchdescription+xml

3.8.1. Customizing Shortcuts

The shortcuts table can be customized by overriding the

DeploymentConfiguration class.

Refer to chapter 2, section 2.3 for more information about Deployment

Configuration.

 29

4. Link Builders

The LinkBuilders interface enables access to two types of links builders, the

SystemLinksBuilder and the SingleLinkBuilder. An instance of

LinkBuilders is injected into a class field or method parameter using the

@Context annotation. Upon creation, the LinkBuilders automatically detects if

the target method being invoked is a resource method or a sub-resource

method. The “resource” and “subResource” properties of the builder are

initialized according to the invoked method type. The link builder interfaces

reside in the org.apache.wink.server.utils package.

4.1. Link Builders Overview

The JAX-RS specification defines the UriBuilder interface used to construct a

URI from a template, but does not specify any mechanism that can

automatically generate all resource links.

Wink provides the SystemLinksBuilder for automatic generation of all the

alternate links to a resource, one link per every supported media type. For

example, this is useful for an application that produces Atom feeds to include in

the feed all the alternate representations of the resource.

Wink provides a mechanism for defining if the generated links should be

absolute links or relative to a base URI. For example, links embedded in an

Atom feed should be as short as possible in order to optimize the payload size.

4.2. The “alt” Query Parameter

Wink supports the special query parameter “alt” that is used to override the

value of the request Accept header. When the link builders generate a link that

specifies the “type” attribute, then the “alt” query parameter is automatically

added to the generated link. This is controlled by setting the

wink.addAltParam key of the configuration properties file or by calling the

LinksBuilder#addAltParam() method.

Refer to chapter 3, section 3.5 for more information on Configuration

Properties.

Apache Wink 0.1 User Guide

30

4.3. System Links Builder

The SystemLinksBuilder interface enables the generation of all, or a subset

of, the system links to a resource or its sub-resources. The links are generated

as absolute URIs or as relative to the base URI according to the

SystemLinksBuilder state, request information or the application

configuration.

4.3.1. Example

@Path(“defects/{id}”)

public class DefectResource {

 @GET

 @Produces(“application/atom+xml”)

 public SyndEntry getAtom() {

 ...

 }

 @GET

 @Produces(“application/json”)

 public JSONObject getJson() {

 ...

 }

 @GET

 @Produces(“application/xml”)

 public Defect getXml(@Context LinkBuilders linkBuilders) {

 SystemLinksBuilder builder = linkBuilders.systemLinksBuilder();

 List<SyndLink> systemLinks = builder.build(null);

 ...

 }

}

The DefectResource#getXml() method is invoked when a GET request for

application/xml is made to /defects/3. The Wink runtime injects an instance of

LinkBuilders to the linkBuilder parameter and a new instance of a

SystemLinksBuilder is created by invoking the systemLinksBuilder() method.

 31

The call to the build() method of the SystemLinksBuilder generates three

alternate links to the DefectResource and the self link:

 <link rel=”self” href=”/defects/3”/>

 <link rel=”alternate” type=”application/json” href=”/defects/3”/>

 <link rel=”alternate” type=”application/xml” href=”/defects/3”/>

 <link rel=”alternate” type=”application/xtom+xml” href=”/defects/3”/>

4.4. Single Link Builder

The SingleLinkBuilder interface enables the generation of a single link

referencing a resource or a sub-resource, allowing the specification of the „rel’

and „type’ attributes of the generated link. The links are generated as absolute

URIs or as relative to the base URI according to the SingleLinkBuilder state,

request information or the application configuration.

4.5. Generating Absolute or Relative Links

The link builders generate absolute or relative links based on the following

algorithm:

1 Use the value that was passed to the relativize() method of the builder.

2 If the relativize() method was not called, then use the value of the

“relative-urls” query parameter from the request. The value must be

either true or false.

3 If the request does not contain the “relative-urls” query parameter,

then use the value of the wink.defaultUrisRelative key set in the

application configuration properties file. The value must be either true

or false.

Refer to chapter 3, section 3.5 for more information on the Configuration

Properties file.

4 If the configuration key does not exist, then use true.

Apache Wink 0.1 User Guide

32

5. Assets

An Asset is a special entity that is returned by a resource method or is injected

into a resource method as an entity parameter. The asset is used for retrieving

the actual request entity or response entity.

The purpose of an asset is to act as a container of an entity data model while

providing the transformation methods of the data model into data models of

other representations.

Asset classes are POJOs, annotated with the @Asset annotation, that have any

number of entity methods.

When an asset instance is returned from a resource method or is set as the

entity on a Response instance, it is used by the Wink runtime to retrieve the

actual response entity by invoking the appropriate entity-producing method

of the asset.

Refer to chapter 5, section 5.3.1 for more information on Entity-Producing

Methods.

When an asset is the entity parameter of a resource method, it is used by the

Wink runtime to set the actual request entity by invoking the appropriate

entity-consuming method of the asset.

Refer to chapter 5, section 5.3.2 for more information on Entity-

Consuming Methods.

5.1. Assets Overview

A typical application exposes each resource in a number of representations.

Some form of data model usually backs the resource, and the application

business logic relies on the manipulation of that data model.

The application will most likely expose resource methods allowing the

consumption of the data model in more than one representation (for example

 33

Atom and XML) and the production of the data model in other representation

(for example Atom, XML and JSON).

According to the JAX-RS specification, the optimal method for implementing a

resource is one that consumes and produces an application data model and

makes use of a different provider for every media type.

For example, if a resource implements methods that consume and produce a

”Defect” bean, then a provider must be implemented for each representation of

the “Defect” (Atom, XML and JSON). However, there are times that the

transformation of the application data model into a representation requires

information that may only be available to the resource but is unavailable to a

provider (for example, a connection to the Database).

There are several solutions for dealing with the problem of a provider not

having sufficient information to perform application data transformations. The

following is a description of two possible solutions:

 Passing the information as members on the resource and accessing the

resource from the provider via the UriInfo context.

This solution is only plausible if the resource scope is “per request” and

does not work if the resource is a singleton.

 Passing the information from the resource to the provider via the attributes

of the HttpServletRequest.

This solution is only plausible when the application is deployed in a JEE

container and is not the optimal solution.

In addition to the previously mentioned problem, the creation of a provider for

every data model per media type may result in the inflation of providers in the

system, causing the provider selection algorithm to consider a large set of

potential providers.

As a result, the selection of the actual provider from the set of potential

providers is non-deterministic, because the selection between them is

undefined.

Note

Performance Degradation

An additional side effect of provider inflation is performance

degradation.

Apache Wink 0.1 User Guide

34

The use of an asset solves the problem of passing information between a

resource and a provider and reduces the amount of registered providers in the

system.

5.2. Lifecycle

Resource methods can use an asset as a response entity and as a request entity.

The Wink runtime applies different lifecycles for each case.

5.2.1. Response Entity Asset

The lifecycle of an asset as a response entity is as follows:

 The application creates and returns the asset from the resource method.

 The appropriate entity-producing method is invoked by the Wink runtime

to retrieve the actual response entity.

 The appropriate message body writer as obtained from the

Providers#getMessageBodyWriter() method serializes the entity obtained

at the previous step.

 The asset is made available for garbage collection.

5.2.2. Request Entity Asset

The lifecycle of an asset as a request entity is as follows:

 An asset class is instantiated by the Wink runtime by invoking the asset

default constructor. Note that this implies that the asset class must have a

public default constructor.

 The appropriate message body reader as obtained from the

Providers#getMessageBodyReader() method is invoked by the Wink

runtime to read the request entity.

 The appropriate entity-consuming method is invoked on the asset to

populate the asset with the request entity.

 The asset is injected into the resource method as the entity parameter.

 The asset is made available for garbage collection after returning from the

resource method.

 35

5.3. Asset Entity Methods

Asset Entity methods are the public methods of an asset annotated with

either @Consumes or @Produces annotation. Annotating a method with both

@Consumes and @Produces annotations is not supported and may result in

unexpected behavior.

5.3.1. Entity Producing Methods

An Entity Producing Method is a public asset method annotated with the

@Produces annotation, designating it to produce the actual response entity.

Such methods produce an entity only for the media types declared in the

@Produces annotation. Note that under this definition, wildcard (“*/*”) is

allowed.

The Wink runtime will not invoke an entity-producing method whose effective

value of @Produces does not match the request Accept header

5.3.2. Entity Consuming Methods

An Entity Consuming Method is a public asset method annotated with the

@Consumes annotation, designating it to consume the actual request entity for

populating the asset. Such methods consume an entity only for the media types

declared in the @Consumes annotation. Note that under this definition,

wildcard (“*/*”) is allowed.

The Wink runtime will not invoke an entity-consuming method whose effective

value of @Consumes does not match the request Content-Type header.

5.4. Parameters

Asset Entity methods support the same parameter types as JAX-RS specifies

for a resource method.

5.5. Return Type

Entity methods may return any type that is permissible to return from a

resource method.

Apache Wink 0.1 User Guide

36

5.6. Exceptions

Exceptions thrown from an entity method are treated as exceptions thrown

from a resource method.

5.7. Annotation Inheritance

The @Produces and @Consumes annotations are not inherited when an asset

sub-class overrides an asset entity method. Asset sub-classes must re-declare

the @Produces and @Consumes annotations for the overriding method to be an

entity method.

5.8. Entity Method Matching

Asset classes are handled by the AssetProvider which is a JAX-RS provider

that is capable of consuming and producing all media types.

Refer to chapter 3, section 6.3.5 for more information on Asset Providers.

 37

5.8.1. Request Entity Matching

The following points describe the process of selecting the asset entity-

consuming method to handle the request entity. This process occurs during the

invocation of the AssetProvider#isReadable() method.

 Collect all the entity-consuming methods of the asset. These are the public

methods annotated with @Consumes annotation.

 Sort the collected entity-consuming methods in descending order, where

methods with more specific media types precede methods with less specific

media types, following the rule n/m > n/* > */*.

 Select the first method that supports the media type of the request entity

body as provided to the AssetProvider#isReadable() method, and return

true.

 If no entity-consuming method supports the media type of the request

entity body, return false. The Wink runtime continues searching for a

different provider to handle the asset as a regular entity.

5.8.2. Response Entity Matching

The following points describe the process of selecting an entity-producing

method to produce the actual response entity. The following process occurs

during the invocation of the AssetProvider#isWriteable()method.

 Collect all the entity-producing methods of the asset. These are the public

methods annotated with @Produces annotation.

 Sort the collected entity-producing methods in descending order, where

methods with more specific media types precede methods with less specific

media types, following the rule n/m > n/* > */*.

 Select the first method that supports the media type of the response entity

body as provided to the AssetProvider#isWriteable()method and return

true.

 If no entity-producing method supports the media type of the response

entity body, return false. The Wink runtime continues searching for a

different provider to handle the asset as a regular entity.

Apache Wink 0.1 User Guide

38

5.9. Asset Example

The following example illustrates the use of an asset. The “Defect” bean is a

JAXB annotated class.

The DefectAsset class is the asset backed by an instance of a “Defect” bean. The

DefectResource class is a resource that is anchored to the URI path

“defects/{id}” within the Wink runtime.

DefectAsset Class

@Asset

public class DefectAsset {

 public Defect defect;

 public DefectAsset(Defect defect) {

 this.defect = defect;

 }

 @Produces("application/xml")

 public Defect getDefect() {

 return this.defect;

 }

 @Produces("text/html")

 public String getDefectAsHtml() {

 String html = ...;

 return html;

 }

 @Produces("application/atom+xml")

 public AtomEntry getDefectAsAtom() {

 AtomEntry entry = ...;

 return entry;

 }

 @Consumes("application/xml")

 public void setDefect(Defect defect) {

 this.defect = defect;

 }

}

 39

DefectResource Class

@Path("defects/{id}")

public class DefectResource {

 @GET

 public DefectAsset getDefect(@PathParam("id") String id) {

 return new DefectAsset(defects.get(id));

 }

 @PUT

 public DefectAsset updateDefect(DefectAsset defectAsset,

 @PathParam("id") String id) {

 defects.put(id, defectAsset.getDefect());

 return defectAsset;

 }

}

Scenario Explanation 1

 A client issues an HTTP GET request with a URI=”/defects/1” and Accept

Header= “application/xml”

 The Wink runtime analyzes the request and invokes the

DefectResource#getDefect() resource method.

 The DefectResource#getDefect() resource method creates an instance of

DefectAsset and populates it with defect “1” data.

 The DefectResource#getDefect() resource method returns the

DefectAsset instance back to Wink runtime.

 The Wink runtime analyzes the asset and invokes the

DefectAsset#getDefect() entity-producing method to obtain the reference to

the “Defect” bean.

 The “Defect” bean is serialized by Wink runtime as an XML using the

appropriate provider.

Scenario Explanation 2

 A Client issues an HTTP GET request with a URI=”/defects/1” and Accept

Header= “text/html”

 The Wink runtime analyzes the request and invokes the

DefectResource#getDefect() resource method

Apache Wink 0.1 User Guide

40

 The DefectResource#getDefect() resource method creates an instance of

DefectAsset and populates it with defect “1” data.

 The DefectResource#getDefect() method returns the populated asset back

to the Wink runtime.

 The Wink runtime analyzes the asset and invokes the

DefectAsset#getDefectAsHtml() entity-producing method in order to obtain

the reference to the “Defect” bean.

 The “Defect” is serialized by Wink runtime as an HTML using the

appropriate provider.

Scenario Explanation 3

 A Client issues an HTTP PUT request with a URI=”/defects/1” and Accept

Header= “text/html”

 The Wink runtime analyzes the request and invokes the

DefectResource#updateDefect() method with an instance of DefectAsset

populated with the request entity.

— A DefectAsset is instantiated by the Wink runtime

— The DefectAsset#setDefect() entity-consuming method is invoked in

order to populate the DefectAsset with the defect data.

 41

6. Providers

In addition to JAX-RS standard providers (section 4.2 of the JAX-RS

specification), Wink provides a set of complementary providers. The purpose of

these providers is to provide mapping services between various representations

(for example Atom, APP, OpenSearch, CSV, JSON and HTML) and their

associated Java data models.

The Wink providers are pre-registered and delivered with the Wink runtime

along with the JAX-RS standard providers.

6.1. Scoping

The JAX-RS specification defines that by default, a singleton instance of each

provider class is instantiated for each JAX-RS application. Wink fully supports

this requirement and in addition provides a “Prototype” lifecycle, which is an

instance per-request lifecycle.

Prototype means that a new instance of a provider class is instantiated for each
request. The @Scope annotation (section0) is used on a provider class to

specify its lifecycle. The lifecycle of a provider that does not specify the @Scope

annotation defaults to the singleton lifecycle.

6.1.1. Prototype Example

The following example shows how to define a provider with a prototype

lifecycle.

@Scope(ScopeType.PROTOTYPE)

@Provider

public class MyProvider implements MessageBodyReader<String>{

 ...

}

Apache Wink 0.1 User Guide

42

6.1.2. Singleton Example 1

The following example shows how to define a provider with a singleton

lifecycle.

@Scope(ScopeType.SINGELTON)

@Provider

public class MyProvider implements MessageBodyReader<String>{

 ...

}

6.1.3. Singleton Example 2

The following example shows that when the @Scope annotation is not used, the

provider will be a singleton, as per the JAX-RS specification.

@Provider

public class MyProvider implements MessageBodyReader<String>{

 ...

}

6.2. Priority

Wink provides a method for setting a priority for a provider.

Refer to chapter 3, section 3.4.2 for more information on Provider

Priorities.

 43

6.3. Out-of-the-Box Implementations

The following section describes the Wink providers that are an addition to the

JAX-RS requirements.

6.3.1. Atom Providers

Wink provides a set of entity providers that are capable of mapping Atom Feed

and Atom Entry XML documents to and from an Atom data model.

Refer to chapter 9 for more information on Data Models.

The following tables list these providers.

AtomFeedProvider

Table 5: AtomFeedProvider

 Supported Media Types Entity

Read Yes application/atom+xml AtomFeed

Write Yes application/atom+xml

AtomFeedSyndFeedProvider

Table 6: AtomFeedSyndFeedProvider

 Supported Media Types Entity

Read Yes application/atom+xml SyndFeed

Write Yes application/atom+xml

Apache Wink 0.1 User Guide

44

AtomFeedJAXBElementProvider

Table 7: AtomFeedJAXBElementProvider

 Supported Media Types Entity

Read Yes application/atom+xml JAXBElement<AtomFeed>

Write Yes application/atom+xml

AtomEntryProvider

Table 8: AtomEntryProvider

 Supported Media Types Entity

Read Yes application/atom+xml AtomEntry

Write Yes application/atom+xml

AtomEntrySyndEntryProvider

Table 9: AtomEntrySyndEntryProvider

 Supported Media Types Entity

Read Yes application/atom+xml SyndEntry

Write Yes application/atom+xml

 45

AtomEntryJAXBElementProvider

Table 10: AtomEntryJAXBElementProvider

 Supported Media Types Entity

Read Yes application/atom+xml JAXBElement<AtomEntry>

Write Yes application/atom+xml

6.3.2. APP Providers

Wink provides a set of providers that are capable of mapping APP Service

Document and APP Categories data models to their xml representations. The

following tables list these providers.

Refer to chapter 9, section 9.5 in chapter 9 for more information on the

Atom Publishing Protocol.

AppServiceProvider

Table 11: AppServiceProvider

 Supported Media Types Entity

Read No N/A N/A

Write Yes application/atomsvc+xml AppService

AppCategoriesProvider

Table 12: AppCategoriesProvider

 Supported Media Types Entity

Read No N/A N/A

AppCategories
Write Yes application/atomcat+xml

Apache Wink 0.1 User Guide

46

CategoriesProvider

Table 13: CategoriesProvider

 Supported Media Types Entity

Read No N/A N/A

Write Yes application/atomcat+xml Categories

6.3.3. OpenSearch Provider

Wink provides a single provider that is capable of serializing the OpenSearch

data model.

Refer to the xml representations chapter 9, section 9.7 for more information

on OpenSearch.

OpenSearchDescriptionProvider

Table 14: OpenSearchDescriptionProvider

 Supported Media Types Entity

Read No N/A N/A

Write Yes application/opensearchde

scription+xml

OpenSearchDescription

 47

6.3.4. Json Providers

Wink provides a set providers that are capable of serializing a number of data

models (JSONObject, JAXBElement, SyndEntry, SyndFeed) into JSON

representations. The following tables list these providers.

JsonProvider

Table 15: JsonProvider

 Supported Media Types Entity

Read No N/A N/A

Write Yes application/json ,

application/javascript

JSONObject

JsonJAXBProvider

Table 16: JsonJAXBProvider

 Supported Media Types Entity

Read No N/A N/A

Write Yes application/json ,

application/javascript

JAXB object,

JAXBElement<?>

JsonSyndEntryProvider

Table 17: JsonSyndEntryProvider

 Supported Media Types Entity

Read No N/A N/A

Write Yes application/json ,

application/javascript

SyndEntry

Apache Wink 0.1 User Guide

48

JsonSyndFeedProvider

Table 18: JsonSyndFeedProvider

 Supported Media Types Entity

Read No N/A N/A

Write Yes application/json ,

application/javascript

SyndFeed

6.3.5. Asset Provider

Wink provides a special provider that is responsible for reading and writing

Asset objects.

Refer to chapter 5 for more information on Assets.

AssetProvider

Table 19: AssetProvider

 Supported Media Types Entity

Read Yes */* POJOs annotated with

@Asset annotation.

Write Yes */* POJOs annotated with

@Asset annotation.

 49

6.3.6. HTML Providers

Wink provides a set of providers that are capable of serializing a number of

data models (SyndEntry, SyndFeed and HtmlDescriptor) as HTML. The

following tables list these providers.

HtmlProvider

Table 20: HtmlProvider

 Supported Media Types Entity

Read NO N/A N/A

Write Yes text/html HtmlDescriptor

HtmlSyndEntryProvider

Table 21: HtmlSyndEntryProvider

 Supported Media Types Entity

Read NO N/A N/A

Write Yes text/html SyndEntry

HtmlSyndFeedProvid

Table 22: HtmlSyndFeedProvid

 Supported Media Types Entity

Read NO N/A N/A

Write Yes text/html SyndFeed

Apache Wink 0.1 User Guide

50

6.3.7. CSV Providers

Wink supports the serializing and de-serializing of data as a CSV.

Refer to chapter 9, section 9.6 for more information on Comma Separated

Values.

The following tables list the providers that provide this functionality.

CsvSerializerProvider

Table 23: CsvSerializerProvider

 Supported Media Types Entity

Read NO N/A N/A

Write Yes text/csv CsvSerializer

CsvDeserializerProvider

Table 24: CsvDeserializerProvider

 Supported Media Types Entity

Read Yes text/csv CsvDeserializer

Write NO N/A N/A

 51

7. Annotations

Wink provides several annotations in addition to those defined by the JAX-RS

specification. The following section describes these annotations in detail.

7.1. @Workspace Annotation

The purpose of the @Workspace annotation is to associate a “Collection

Resource” with a workspace element and collection elements in an APP Service

Document.

Refer to chapter 10 for more information on APP Service Document.

The workspaceTitle annotation parameter specifies the title of the workspace

and the collectionTitle annotation parameter specifies the title of the

collection.

Annotation Specification

Table 25: @Workspace Annotation Specification

Value Description

Mandatory No

Target Resource class

Parameters Name Type

workspaceTitle String

collectionTitle String

Example @Workspace(workspaceTitle = "Title",

collectionTitle = "Collection")

Apache Wink 0.1 User Guide

52

7.1.1. @Workspace Annotation Example

The following example demonstrates the use of @Workspace annotation on two

resources in order to have the auto-generated APP service document contain

the information about them.

Given the following collection Resources definitions, ResourceA and ResourceB,

the result is displayed in the “Auto Generated APP Service Document” table

that follows.

ResourceA Definition

@Workspace(workspaceTitle = "Services", collectionTitle = "Service1")

@Path("services/service1")

public class ResourceA {

 @POST

 @Produces("text/plain")

 @Consumes({"application/atom+xml", "application/xml"})

 public String getText() {return "hey there1";}

}

ResourceB Definition

@Workspace(workspaceTitle = "Services", collectionTitle = "Service2")

@Path("services/service2")

public class ResourceB {

 @POST

 @Produces("text/plain")

 @Consumes({"application/atom+xml", "application/xml"})

 public String getText() {return "hey there2";}

}

The auto-generated APP Service Document is as follows:

 53

Auto Generated APP Service Document

<service xmlns:atom=http://www.w3.org/2005/Atom

 xmlns="http://www.w3.org/2007/app">

 <workspace>

 <atom:title>Services</atom:title>

 <collection href="services/service1">

 <atom:title>Service1</atom:title>

 <accept>application/xml</accept>

 <accept>application/atom+xml</accept>

 </collection>

 <collection href="services/service2">

 <atom:title>Service2</atom:title>

 <accept>application/xml</accept>

 <accept>application/atom+xml</accept>

 </collection>

 </workspace>

</service>

http://www.w3.org/2005/Atom

Apache Wink 0.1 User Guide

54

7.2. @Asset Annotation

The @Asset annotation is a marker annotation used by the Wink runtime in

order to identify an entity as an Asset.

Refer to chapter 5 for more information on Assets.

Annotation Specification

Table 26: @Asset Annotation Specification

Value Description

Mandatory No

Target Resource class

Parameters None

Example @Asset

 55

7.3. @Scope Annotation

The JAX-RS specification defines the default lifecycle behavior for resources

and providers, and the option for controlling the lifecycle through the

javax.ws.rs.core.Application class.

Wink provides the @Scope annotation to specify the lifecycle of a provider or

resource.

Annotation Specification

Table 27: @Scope Annotation Specification

Value Description

Mandatory No

Target Provider class or Resource class

Parameters Name Type

value ScopeType enum

Example @Scope(ScopeType.PROTOTYPE)

7.3.1. Resource Example

The following example illustrates how to define a resource with a singleton

lifecycle.

@Scope(ScopeType.SINGLETON)

@Path("service1")

public class ResourceA {

 ...

}

Apache Wink 0.1 User Guide

56

7.3.2. Provider Example

The following example illustrates how to define a provider with a prototype

lifecycle.

@Scope(ScopeType.PROTOTYPE)

@Provider

public class EntityProvider implements MessageBodyReader<String> {

 ...

}

7.4. @Parent Annotation

The @Parent annotation provides the ability to define a base template URI for

the URI specified in a resources @Path annotation.

If a resource is annotated with the @Parent annotation, the Wink runtime

calculates the final resource template by first retrieving the value of the

@Parent annotation, which holds the parent resource class, and then

concatenates the resource path template definition to the path template

definition of the parent resource.

Annotation Specification

Table 28: @Parent Annotation Specification

Value Description

Mandatory No

Target Resource class

Parameters Name Type

value Class<?>

Example @Parent(ParentResource.class)

 57

Example

@Path("services")

public class ParentResource {

 ...

}

@Parent(BaseResource.class)

@Path("service1")

public class ResourceA {

 ...

}

Explanation

In the example, the user defined two resources: A ParentResource and

ResourceA. ParentResource defines the @Path annotation to associate it with

“services” URI. ResourceA defines the @Path annotation to associate it with

“service1” URI and defines ParentResource to be its parent by specifying it in

the @Parent annotation. In this case, the final URI path for ResourceA is

“services/service1”.

Apache Wink 0.1 User Guide

58

8. Resource Matching - Continued Search

Wink provides a Continued Search mode when searching for a resource

method to invoke during request processing, which is an extended search mode

to the algorithm defined by the JAX-RS specification.

8.1. Resource Matching Overview

Section 3.7.2 of the JAX-RS specification describes the process of matching

requests to resource methods. The fact that only the first matching root

resource (section 1(f) of the algorithm) and only the first matching sub-resource

locator (section 2(g) of the algorithm) are selected during the process makes it

difficult for application developers to implement certain scenarios.

For example, it is impossible to have two resources anchored to the same URI,

each having its own set of supported methods:

@Path("my/service")

public class ResourceA {

 @GET

 @Produces("text/plain")

 public String getText() {...}

}

@Path("my/service")

public class ResourceB {

 @GET

 @Produces("text/html")

 public String getHtml() {...}

}

Explanation

In order to implement this according to the JAX-RS specification, ResourceB

must extend ResourceA and be registered instead of ResourceA. However, this

may not always be possible, such as in an application that uses JAX-RS as the

web service frontend while providing an open architecture for registering

extending services. For example, Firefox that provides an Extensions

mechanism. The extending service must be aware of the core implementation

 59

workings and classes, that may not always be plausible. Moreover, it is

impossible for a service to extend the functionality of another service without

knowing the inner workings of that service, that creates an “evil” dependency

between service implementations.

In order to solve this problem, Wink provides a special resource Continued

Search mode when searching for a resource and method to invoke. By default,

this mode is off, meaning that the search algorithm is strictly JAX-RS

compliant. When this mode is activated, and a root resource or sub-resource

locator proves to be a dead-end, the Wink runtime will continue to search from

the next root-resource or sub-resource locator, as if they were the first match.

In the previous example, there is no way to know which of the resources is a

first match for a request to “/my/service”. If the Continued Search mode is off,

either the getText() method is unreachable or the getHtml() method is

unreachable. However, when the Continued Search mode is active, a request

for text/plain reaches the getText() method in ResourceA, and a request for

text/html reaches the getHtml() method in ResourceB.

8.2. Configuration

The Continued Search mode is activated by setting the value of the

wink.searchPolicyContinuedSearch key in the application configuration

properties file to true.

If the key is set to anything else but true or if it does not exist in the properties

file, then the Continued Search mode is set to off, and the behavior is strictly

JAX-RS compliant.

Apache Wink 0.1 User Guide

60

9. Data Models

The following chapter describes the out-of-the-box data models provided and

supported by the Wink runtime.

9.1. JAXB

Wink supports JAXB objects for consuming and producing XML

(application/xml), and for producing JSON (application/json).

An application may provide a ContextResolver for obtaining the JAXBContext

of the JAXB object. If no suitable JAXBContext is obtained from a

ContextResolver, then the Wink runtime uses a default JAXBContext

initialized with the JAXB object.

9.2. JSON

Wink utilizes the json.org implementation for producing JSON

(application/json).

9.3. Syndication

Wink provides a syndication data model for producing Atom

(application/atom+xml), HTML (text/html), JSON (application/json) and CSV

(text/csv), and for consuming Atom and CSV. All of the model classes are

located under the org.apache.wink.common.model.synd package.

9.4. Atom

Wink provides an Atom 1.0 data model for consuming and producing Atom

feeds and entries (application/atom+xml). All of the model classes are located

under the org.apache.wink.common.model.atom package.

 61

9.5. Atom Publishing Protocol (APP)

Wink provides an Atom Publishing Protocol data model for producing Service

Documents (application/atomsvc+xml) and Categories Documents

(application/atomcat+xml). The APP data model can also be used to produce

Service and Categories documents in HTML (text/html) and JSON

(application/json) formats. All of the model classes are located under the

org.apache.wink.common.model.app package.

9.6. Comma Separated Values (CSV)

Wink provides a CSV data model for producing and consuming CSV (text/csv).

The model is based on a Serialization and a Deserialization interface, in

addition to a simple CSV Table class. All of the model classes are located under

the org.apache.wink.common.model.csv package.

9.7. OpenSearch

Wink provides an OpenSearch data model for producing OpenSearch

Description Documents (application/opensearchdescription+xml). All of the

model classes are located under the

org.apache.wink.common.model.opensearch package.

Apache Wink 0.1 User Guide

62

10. APP Service Document

Wink supports the automatic and manual generation of APP Service

Documents by providing an APP data model and set of complementary

providers.

Atom Publishing Protocol Service Documents are designed to support the auto-

discovery of services. APP Service Documents represent server-defined groups

of Collections used to initialize the process of creating and editing resources.

These groups of collections are called Workspaces. The Service Document can

indicate which media types and categories a collection accepts.

The Wink runtime supports the generation of the APP Service Documents in

the XML (application/atomsvc+xml) and HTML (text/html) representations.

10.1. Enabling the APP Service Document Auto Generation

APP Service Document generation is activated by setting the

wink.rootResource key in the configuration properties file. By default, the

key value is set to “atom+html”, indicating that both XML

(application/atomsvc+xml) and HTML (text/html) representations are

available.

Once activated, the auto-generated APP Service Document is available at the

application root URL “http://host:port/application”.

10.2. Adding Resources to APP Service Document

Wink provides the @Workspace annotation used to associate a Collection

Resource with an APP Service Document workspace and collection elements.

The only requirement to incorporate a collection resource in a service document

is to place the @Workspace annotation on the resource.

Refer to chapter 7, section 7.1 for more information on the @Workspace

annotation.

 63

10.2.1. Example

Given the following collection resource definition:

@Workspace(workspaceTitle = "Workspace", collectionTitle = "Title")

@Path("my/service")

public class ResourceA {

 ...

}

The auto-generated APP Service Document is:

<service xmlns:atom=http://www.w3.org/2005/Atom

 xmlns="http://www.w3.org/2007/app">

 <workspace>

 <atom:title>Workspace</atom:title>

 <collection href="my/service">

 <atom:title>Title</atom:title>

 <accept/>

 </collection>

 </workspace>

</service>

10.3. APP Service Document HTML Styling

Wink provides the ability to change the default styling of the APP Service

Document HTML representation. The styling is changed by setting the value of

the wink.serviceDocumentCssPath key in the configuration properties file

to the application specific CSS file location.

http://www.w3.org/2005/Atom

Apache Wink 0.1 User Guide

64

10.4. Implementation

The following classes implement the APP Service Document support:

 org.apache.wink.server.internal.resources.RootResource –

generates the XML (application/atomsvc+xml) representation of the APP

Service Document.

 org.apache.wink.server.internal.resources.

HtmlServiceDocumentResource - generates the HTML (text/html)

representation of the APP Service Document.

 65

11. Spring Integration

Wink provides an additional module deployed as an external jar in order to

provide Spring integration.

The Spring integration provides the following features:

 The ability to register resources and providers from the Spring context,

registered as classes or as Spring beans.

 The ability to define the lifecycle of resources or providers that are

registered as Spring beans, overriding the default scope specified by the

JAX-RS specification.

 Resources and providers can benefit from Spring features such as IoC and

post-processors.

 Customize Wink from the Spring context. When working with Spring, Wink

defines a core spring context that contains customization hooks, enabling

easy customization that would otherwise require coding.

Apache Wink 0.1 User Guide

66

11.1. Spring Registration

Spring makes it convenient to register resources and providers as spring beans.

11.1.1. Spring Context Loading

In order to load the Spring Context, it is necessary to add a Context Load

Listener definition to the web.xml file. The contextConfigLocation context-

param must specify the location of the Wink core context file and the

application context file, as described in the following example:

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>classpath:META-INF/server/wink-core-context.xml

 classpath:mycontext.xml

 </param-value>

</context-param>

<listener>

 <listener-class>

 org.springframework.web.context.ContextLoaderListener

 </listener-class>

</listener>

11.1.2. Registering Resources and Providers

Wink provides the org.apache.wink.spring.Registrar class in order to register

resources and providers through a Spring context. The Registrar class extends

the WinkApplication class and must be registered as a singleton spring bean. It

is possible to define multiple registrars in the same context.

All registrars are automatically collected by the runtime and registered as

WinkApplication objects during the context loading.

 67

The registrar provides the following properties:

 instances – instances of resources and providers. Ordinarily, these

instances are Spring beans, so they can benefit from IoC and other Spring

features.

 classes – a set of resources and providers class names. This property is

similar to the getClasses() method of the Application class.

 priority – the priority of the WinkApplication

Refer to chapter 3, section 3.4 for more information on Priorities.

<bean class="org.apache.wink.spring.Registrar">

 <property name="classes">

 <set value-type="java.lang.Class">

 <value>package.className</value>

 </set>

 </property>

 <property name="instances">

 <set>

 <ref bean="resources.resource1" />

 <ref bean="resources.resource2" />

 <ref bean="providers.provider1" />

 </set>

 </property>

</bean>

Apache Wink 0.1 User Guide

68

11.2. Custom Properties File Definition

Wink provides a set of customizable properties. When working with Spring, the

user should redefine the custom properties file using the Spring context:

<bean id="customPropertiesFactory"

class="org.springframework.beans.factory.config.PropertiesFactoryBean">

 <property name="locations">

 <list>

 <value>WEB-INF/configuration.properties</value>

 </list>

 </property>

</bean>

<bean id=”customConfigurer”

class="org.springframework.beans.factory.config.PropertyPlaceholderConfig

urer">

 <property name="ignoreUnresolvablePlaceholders" value="true" />

 <property name="order" value="1" />

 <property name="propertiesArray">

 <list>

 <props>

 <prop

key="winkInternalPropertiesFactory">customPropertiesFactory</prop>

 </props>

 </list>

 </property>

</bean>

 The customPropertiesFactory bean loads the properties file.

 The customConfigurer bean overrides the default factory with a custom

factory.

 The order is set to “1”. This makes the customConfigurer bean run before

the default Wink configurer.

 69

 In addition, notice that ignoreUnresolvablePlaceholders must be set to

true, otherwise the configurer will fail, since some unresolved properties

can remain in the context.

11.3. Customizing Media-Type Mappings

Wink provides the ability to customize the Media-Type mappings using Spring

context.

Refer to chapter 3, section 3.7 for more information on Media-Type

Mapping.

<bean id="custom.MediaTypeMapper"

class="org.apache.wink.server.internal.MediaTypeMapper">

 <property name="mappings">

 <list>

 <map>

 <entry key="userAgentStartsWith" value="Mozilla/" />

 <entry key="resultMediaType">

 <util:constant static-field=" javax.ws.rs.core.MediaType.ATOM"

/>

 </entry>

 <entry key="typeToSend">

 <util:constant static-

field="javax.ws.rs.core.MediaType.TEXT_XML" />

 </entry>

 </map>

 </list>

 </property>

</bean>

<bean id=”customConfigurer”

class="org.springframework.beans.factory.config.PropertyPlaceholderConfig

urer">

 <property name="ignoreUnresolvablePlaceholders" value="true" />

Apache Wink 0.1 User Guide

70

 <property name="order" value="1" />

 <property name="propertiesArray">

 <list>

 <props>

 <prop key="winkMediaTypeMapper">custom.MediaTypeMapper</prop>

 </props>

 </list>

 </property>

</bean>

 The custom.MediaTypeMapper bean creates a new Media-Type mapper.

 The customConfigurer bean overrides the default factory with a custom

factory.

Note

customConfigurer

The order is set to “1”. This makes the customConfigurer run

before the default Wink configurer.

 In addition, notice that ignoreUnresolvablePlaceholders must be set to

true, otherwise the configurer will fail, since some unresolved properties

can remain in the context.

 71

11.4. Customizing Alternative Shortcuts

Wink provides the ability to customize the Alternative Shortcuts in one of two

ways.

Refer to chapter 3, section 3.8 for more information on Alternative

Shortcuts Mappings.

11.4.1. External Properties File

The shortcuts are defined in a properties file. The shortcuts properties file is

loaded in the same way that the configuration properties file is loaded.

<bean id="custom.Shortcuts"

class="org.springframework.beans.factory.config.PropertiesFactoryBean">

 <property name="locations">

 <list>

 <value>WEB-INF/shortcuts</value>

 </list>

 </property>

</bean>

<bean id=”customConfigurer”

class="org.springframework.beans.factory.config.PropertyPlaceholderConfigur

er">

 <property name="ignoreUnresolvablePlaceholders" value="true" />

 <property name="order" value="1" />

 <property name="propertiesArray">

 <list>

 <props>

 <prop key="winkAlternateShortcutsMap">custom.Shortcuts</prop>

 </props>

 </list>

 </property>

</bean>

Apache Wink 0.1 User Guide

72

11.4.2. Spring Context File

Defines the map of the shortcuts in the Spring context.

 73

12. WebDAV Extension

Wink provides an extension module for supporting the WebDAV protocol. The

extension contains the complete WebDAV XML model and a WebDAV response

builder for easing the process of creating a WebDAV multistatus response.

The WebDAV extension is a single jar wink-webdav-<version>.jar, and it has

no special dependencies.

12.1. WebDAV Data Model

The WebDAV extension provides a Java data model that reflects the WebDAV

XMLs defined in the WebDAV RFC. All classes of the data model are located in

the org.apache.wink.webdav.model package.

12.2. WebDAV Classes

The WebDAV extension provides several classes that applications can use in

order to receive basic support for common WebDAV methods

12.2.1. WebDAVModelHelper

The WebDAVModelHelper class provides helper methods for XML

marshaling and unmarshaling of the WebDAV data model classes. It also

provides helper methods for creating generic properties as DOM element

classes to populate the WebDAV Prop element.

12.2.2. WebDAVResponseBuilder

The WebDAVResponseBuilder class is used in order to create responses to

WebDAV PROPFIND requests. It takes a SyndEntry or SyndFeed as input in

order to create the response.

Apache Wink 0.1 User Guide

74

12.3. Resource Method Definition

A resource method is defined to handle the desired WebDAV method by

annotating it with one of the WebDAV method designators defined in the

WebDAVMethod enum.

The supported WebDAV Http methods are as follows:

 PROPFIND

 PROPPATCH

 MKCOL

 COPY

 MOVE

 LOCK

 UNLOCK.

12.4. Creating a Multistatus Response

In order to create a MULTISTATUS response to a PROPFIND request the user

can use the WebDAVResponseBuilder class, or create the response

manually.

12.4.1. Using WebDAVResponseBuilder

In order to create a multistatus response using the WebDAVResponseBuilder

class, call one of the propfind() methods.

The WebDAVResponseBuilder class also enables the user to provide the

properties to include in the response by extending the PropertyProvider

class, overriding the setPropertyValue() method and passing the property

provider instance to the response builder propfind() method.

 75

12.4.2. WebDAVResponseBuilder Example

@Path("defects/{defect}")

public class DefectResource {

 @WebDAVMethod.PROPFIND

 @Consumes(“application/xml”)

 @Produces(application/xml”)

 public Response propfindDefect(@PathParam("defect") String defected) {

 SyndFeed feed = ...

 return WebDAVResponseBuilder.propfind(feed);

 }

}

The propfindDefect() method is associated with the PROPFIND WebDAV Http

method using the @WebDAVMethod.PROPFIND annotation.

When the propfindDefect() method is invoked, an instance of a

org.apache.wink.common.model.synd.SyndFeed is created and passed to the

WebDAVResponseBuilder.propfind() method in order to create the actual

response.

12.4.3. Manual Creation

In order to create a Multistatus response manually, perform the following

steps:

1 Create a new org.apache.wink.webdav.model.Multistatus instance and

set its fields according to the application logic.

2 Create a new javax.ws.rs.core.Response instance, set the response code

to MULTI_STATUS (207), and set its entity to be the Multistatus

instance.

3 Return the Response instance from the resource method

Apache Wink 0.1 User Guide

76

13. Handler Chains

The Wink runtime utilizes three Handler Chains for the complete processing of

a request: Request chain, Response chain and Error chain.

A handler receives a MessageContext instance for accessing and

manipulating the current request information and a HandlerChain instance

for advancing the chain. It is the responsibility of the handler to pass control to

the next handler on the chain by invoking the doChain() method on the

HandlerChain instance.

A handler may call the doChain() method several times if needed, so handlers

are required to consider the possibility they will be invoked more than once for

the same request.

All handler related interfaces reside in the

org.apache.wink.server.handlers package.

The implementation of separate chains provides the ability to move up and

down one chain before moving on to the next chain. This is particularly useful

for the implementation of the JAX-RS resource-method search algorithm that

includes invoking sub-resource locators, and implementing the Continued

Search mode.

13.1. Handlers

There are two types of handlers:

 System Handler

 User Handler

System Handlers are the handlers that implement the core engine of the

Wink runtime. The Wink runtime will not function correctly if any of the

system handlers are removed from the chain.

User Handlers are the handlers that are provided by an application to

customize a chains behavior and to add unique functionality to it. User

handlers are not part of the core functionality of Wink.

Refer to chapter 2, section 2.3.1 for more details on User Handlers

Customization.

 77

13.2. Message Context

The MessageContext allows the following:

 Allows handlers to access and manipulate the current request information

 Allows handlers to maintain a state by setting attributes on the message

context, as the handlers themselves are singletons and therefore stateless

 Allows handlers to pass information to other handlers on the chain

13.3. Request Handler Chain

The Request Handler Chain is responsible for processing a request according

to the JAX-RS specification by accepting the request, searching for the resource

method to invoke, de-serializing the request entity and finally for invoking the

resource method. It is responsible for invoking sub-resource locators by moving

up and down the chain as needed.

A Request handler is a class that implements the

org.apache.wink.server.handlers.RequestHandler interface.

Apache Wink 0.1 User Guide

78

13.3.1. System Request Handlers

The following is a list of system handlers comprising the request handler chain

in the order that they appear in the chain.

Request Handlers

Table 29: Request Handlers

Handler Description

SearchResultHandler Responsible for throwing the search result

error if there was one during the search for

the resource method

OptionsMethodHandler Generates a response for an OPTIONS

request in case that there is no resource

method that is associated with OPTIONS,

according to the JAX-RS spec

HeadMethodHandler Handles a response for a HEAD request in

case that there is no resource method that is

associated with HEAD, according to the JAX-

RS spec

FindRootResourceHandl

er

Locates the root resource that best matches

the request

FindResourceMethodHa

ndler

Locates the actual method to invoke that

matches the request, invoking sub-resource

locators as needed

CreateInvocationParam

etersHandler

Creates the parameters of the resource

method to invoke and de-serializes the

request entity using the appropriate

MessageBodyReader

InvokeMethodHandler Invokes the resource method

 79

13.3.2. User Request Handlers

User request handlers are inserted before the InvokeMethodHandler handler.

Refer to chapter 2, section 2.3.1 for more details on User Handlers

Customization.

13.4. Response Handler Chain

The Response Handler Chain is responsible for handling the object returned

from invoking a resource method or sub-resource method according to the JAX-

RS specification. It is responsible for determining the response status code,

selecting the response media type and for serializing the response entity.

A Response handler is a class that implements the

org.apache.wink.server.handlers.ResponseHandler interface.

13.4.1. System Response Handlers

The following is a list of system handlers comprising the response handler

chain in the order that they appear in the chain.

Response Handlers

Table 30: Response Handlers

Handler Description

PopulateResponseStatus

Handler

Determines the response status code,

according to the JAX-RS spec

PopulateResponseMedia

TypeHandler

Determines the response media type,

according to the JAX-RS spec

Apache Wink 0.1 User Guide

80

FlushResultHandler Serializes the response entity using the

appropriate MessageBodyWriter

HeadMethodHandler Performs cleanup operations in case that

there was no resource method that was

associated with HEAD.

13.4.2. User Response Handlers

User response handlers are inserted before the FlushResultHandler handler.

Wink initializes the user response handler chain with the

CheckLocationHeaderHandler handler that verifies that the “Location”

response header is present on a response when there is a status code that

requires it, for example, status code: 201.

Refer to chapter 2, section 2.3.1 for more details on User Handlers

Customization.

13.5. Error Handler Chain

The Error Handler Chain is responsible for handling all of the exceptions

that are thrown during the invocation of the Request and Response handler

chains, according to the JAX-RS specification for handling exceptions. It is

responsible for determining the response status code, selecting the response

media type and for serializing the response entity.

An Error handler is a class that implements the

org.apache.wink.server.handlers.ResponseHandler interface.

13.5.1. System Error Handlers

The following is a list of system handlers comprising the error handler chain in

the order that they appear in the chain.

 81

Error Handlers

Table 31: Error Handlers

Handler Description

PopulateErrorResponseH

andler

Prepares the response entity from a thrown

exception according to the JAX-RS

specification

PopulateResponseStatus

Handler

Determines the response status code

according to the JAX-RS spec

PopulateResponseMediaT

ypeHandler

Determines the response media type,

according to the JAX-RS spec

FlushResultHandler Serializes the response entity using the

appropriate MessageBodyWriter

13.5.2. User Error Handlers

User error handlers are inserted before the FlushResultHandler handler.

Refer to chapter 2, section 2.3.1 for more details on User Handlers

Customization.

Apache Wink 0.1 User Guide

82

13.6. Request Processing

The following details how the Wink runtime performs request processing:

1 Create new instances of the three handler chains. The handlers

themselves are singletons.

2 Create a new instance of a MessageContext to pass between the

handlers.

3 Invoke the first handler on the Request chain.

4 Once the request chain is complete, invoke the Response chain and pass

it the MessageContext that was used in the Request chain.

5 Make both chains and the MessageContext available for garbage

collection.

6 If at any time during the execution of a Request or Response chain an

exception is thrown, catch the exception, wrap it in a new

MessageContext instance and invoke the Error chain to produce an

appropriate response.

 83

14. Wink Client

The following chapter describes the Wink Client and provides a detailed

description of the Wink Client component and its functionality.

14.1. This chapter contains the following sections

 Dependencies

 Main Features

 High Level Architecture Overview

 Getting Started with the Wink Client

 Configuration

 Handlers

14.2. Wink Client Overview

The Wink Client is an easy-to-use, high level Java API for writing clients that

consume HTTP-based RESTful Web Services. It utilizes JAX-RS concepts,

encapsulates Rest standards and protocols and maps Rest principles concepts

to Java classes, which facilitates the development of clients for any HTTP-

based Rest Web Services.

The Wink Client also provides a Handlers mechanism that enables the

manipulation of HTTP request/response messages.

Apache Wink 0.1 User Guide

84

14.4. Dependencies

Table 32: Wink Client Dependencies

3-rd Party Java 1.5 Java 1.6 Comments

xercesImpl-2.6.2.jar Required Required

json-20080701.jar Required Required

jsr311-api.jar Required Required

wink-common-

<VERSION>.jar

Required Required

slf4j-simple-1.5.8.jar Required Required May be replaced

with another

SLF4J bindings,

e.g. application

that uses log4j

will replace this

one by slf4j-

log4j12-1.5.8.jar

slf4j-api-1.5.8.jar Required Required

jaxb-api-2.1.jar Required Not

Required

jaxb-impl-2.1.4.jar Required Not

Required

activation-1.1.jar Required Not

Required

stax-api-1.0-2.jar Required Not

Required

http://logging.apache.org/log4j/1.2/index.html

 85

14.5. Main Features

The Wink Clients main features are as follows:

 Utilizes JAX-RS Providers for resource serialization and deserialization

 Provides Java object models, such as Atom, APP, OpenSearch and Json

along with providers to serialize and deserialize these models

 Uses the JDK HttpUrlConnection as default underlying Http client

 Provides integration with Apache Http Client 4.0

 Allows for the easy replacement of the underlying Http transport

 Provides a Handlers mechanism for manipulation of HTTP request and

response messages.

Supports

 Http proxy

 SSL

Apache Wink 0.1 User Guide

86

14.6. High Level Architecture Overview

The following diagram illustrates the high-level architecture of the Wink

Client.

Figure 3: Wink Client high-level view

The RestClient class is the Wink Client entry point and is responsible for

holding different configuration options and the provider registry.

The RestClient is used to create instances of the Resource class. The Resource

class represents a web resource associated with a specific URI and is used to

perform uniform interface operations on the resource it represents.

Every method invocation goes through a user defined handlers chain that

enables for manipulation of the request and response.

 87

14.7. Getting Started with the Wink Client

The following section details the getting started examples that demonstrate

how to write a simple client that consume RESTful Web Services with the

Wink Client.

14.7.1. GET Request

// create the rest client instance

1 RestClient client = new RestClient();

// create the resource instance to interact with

2 Resource resource = client.resource("http://services.com/HelloWorld");

// perform a GET on the resource. The resource will be returned as plain

text

3 String response = resource.accept("text/plain").get(String.class);

Explanation

The RestClient is the entry point for building a RESTful Web Service client. I

order to start working with the Wink Client, a new instance of RestClient

needs to be created, as the example shows in line 1 of the example. A new

Resource is then created with the given URI, by calling the

RestClient#resource() method as appears in line 2.

Finally, the Resource#get() method is invoked in order to issue an Http GET

request as appears in line 3.

Once the Http response is returned, the client invokes the relevant provider to

desterilizes the response in line 3.

Apache Wink 0.1 User Guide

88

14.7.2. POST Request

// create the rest client instance

1 RestClient client = new RestClient();

// create the resource instance to interact with

2 Resource resource = client.resource("http://services.co");

// issue the request

3 String response =

resource.contentType("text/plain").accept("text/plain").post(String.class,

"foo");

Explanation

The POST Request example demonstrates how to issue a simple Http POST

request that sends and receives resources as strings.

First, a new instance of a Resource is created through the RestClient. The Http

POST request is then issued by specifying the request and response media

types and the response entity type (String.class).

14.7.3. POST Atom Request

// create the rest client instance

1 RestClient client = new RestClient();

// create the resource instance to interact with

2 Resource resource = client.resource("http://services.co");

3 AtomEntry request = getAtomEntry();

// issue the request

4 AtomEntry response =

resource.contentType("application/atom+xml").accept("application/atom+xml")

.post(AtomEntry.class, request);

Explanation

The Wink Client provides an object model for Atom (atom feed and atom entry),

and supplies out-of-the-box providers that enable sending and receiving atom

feeds and entries. The example demonstrates how to issue an Http POST

request that sends and receives atom entries.

 89

14.7.4. Using ClientResponse

// create the rest client instance

1 RestClient client = new RestClient();

// create the resource instance to interact with

2 Resource resource = client.resource("http://services.co");

// issue the request

3 ClientResponse response = resource.accept("text/plain").get();

// deserialize response

4 String responseAsString = response.getEntity(String.class);

Explanation

This example demonstrates how to use the ClientResponse object in order to

deserialize the response entity. If the response entity type is not provided when

invoking the Resource#get() method that appears in line 3, the response will be

returned as the raw ClientResponse. In order to trigger the response

deserialization mechanism, the ClientResponse#getEntity() method needs to

be invoked as it appears in line 4 with the required response entity type.

14.8. Client Configuration

The RestClient configuration is performed by using the ClientConfig class. An

instance of the configuration class is passed to the constructor of the RestClient

when constructing a new RestClient.

14.8.1. Important Note

ApacheHttpClientConfig is used instead of default

ClientConfig , if integration with Apache Http Client 4.0 is

required.

Apache Wink 0.1 User Guide

90

The following options can be configured in the RestClient:

 Custom providers via JAX-RS Application

 Handler chain

 Proxy host & port

 Connect and read timeouts

 Redirect

 91

14.8.2. Handler Configuration

1 ClientConfig config = new ClientConfig();

// Create new JAX-RS Application

2 config.handlers(new DummyHandler());

// create the rest client instance

3 RestClient client = new RestClient(config);

// create the resource instance to interact with

4 Resource resource = client.resource("http://services.com/HelloWorld");

// perform a GET on the resource

// the resource will be returned as plain text

5 String response = resource.accept("text/plain").get(String.class);

Explanation

This example demonstrates how to register a custom handler. First, a new

instance of a ClientConfig is created as it appears in line 1. Then the new

handler is added to the handlers chain by invoking the handlers() method on

the ClientConfig instance as it appears in line 2. Finally, a new instance of a

RestClient is created with this configuration as it appears in line 3.

Apache Wink 0.1 User Guide

92

14.8.3. Apache Http Client Configuration

1 ClientConfig config = new new ApacheHttpClientConfig(new

DefaultHttpClient()) ();

// Create new JAX-RS Application

2 config.handlers(new SimpleHandler());

// create the rest client instance

3 RestClient client = new RestClient(config);

// create the resource instance to interact with

4 Resource resource = client.resource("http://services.com/HelloWorld");

// perform a GET on the resource

// the resource will be returned as plain text

5 String response = resource.accept("text/plain").get(String.class);

Explanation

This example demonstrates how to use Apache Http Client 4.0 as Wink

underlying Http client. By default, Wink Client uses HttpUrlConnection to

perform to HTTP request execution. User, that wants to use Apache Http

Client 4.0 instead, needs to create RestClient with ApacheHttpClientConfig, as

it appears in line 3.

14.8.4. Custom Provider Configuration

1 ClientConfig config = new ClientConfig();

 // Create new JAX-RS Application

2 Application app = new Application() {

 @Override

 public Set<Class<?>> getClasses() {

 HashSet<Class<?>> set = new HashSet<Class<?>>();

 set.add(FooProvider.class);

 return set;}};

3 conf.applications(app);

// create the rest client instance

4 RestClient client = new RestClient(config);

// create the resource instance to interact with

5 Resource resource = client.resource("http://services.com/HelloWorld");

// perform a GET on the resource. the resource will be returned as plain

text

6 String response = resource.accept("text/plain").get(String.class);

 93

Explanation

This example demonstrates how to register a custom entity provider. First, a

new instance of ClientConfig is created as it appears in line 1. Then a new

anonymous Application is instantiated and set on the ClientConfig as it

appears in line 2 and 3. Finally, a new instance of a RestClient is created with

this configuration as it appears in line 4.

Apache Wink 0.1 User Guide

94

14.9. Client Handlers

The Wink Client provides a Handlers mechanism that intercepts Http requests

and responses. This mechanism is used to manipulate the request and response

headers and allows the manipulation of the input and output entity streams by

use of adapters.

An application develops custom handlers by implementing the ClientHandler

interface. Custom handlers are registered via the ClientConfig configuration

object. All registered handlers are invoked for every issued request, according

to their registration order.

14.9.1. Custom Handlers

A custom handler implements the ClientHandler interface. The entry point of

the handler is the handle() method. It receives the ClientRequest instance

that encapsulates request information and allows for request data

manipulation. It also receives the HandlerContext instance that is used to

pass control to the next handler on the chain and to set input and output

stream adapters.

Handlers are responsible for the flow control. It is handler‟s responsibility to

call the next handler on the chain by invoking the doChain() method on the

HandlerContext instance.

 95

14.9.2. Custom Handler Implementation

A typical implementation of the “handle” method appears as follows:

public class MyHandler implements ClientHandler {

 public ClientResponse handle(ClientRequest rqs, HandlerContext ctx) {

 // Do something before request is issued to the web resource

1 rqs.getHeaders().add("CUSTOM-REQUEST-HEADER", "Foo-Request");

2 ClientResponse resp = ctx.doChain(request);

 // Do something before response is returned to the client

3 resp.getHeaders().add("CUSTOM-RESPONSE-HEADER", "Foo-Response");

4 return resp;

 }

}

Explanation

This example illustrates a typical implementation of the custom handler. First,

the handler adds a custom header to the request as it appears in line 1, then it

calls the next handler on the chain by invoking the doChain() method (line 2),

adds a custom header to a response as it appears in line 3 and finally returns

the response as it appears in line 4.

14.9.3. Input and Output Stream Adapters

The Wink Client provides the ability to manipulate raw Http input and output

entity streams through the InputStreamAdapter and the

OutputStreamAdapter interfaces. This is useful for modifying the input and

output streams, regardless of the actual entity, for example when adding

compression capabilities.

The adapt() method of the output stream adapter is called before the request

headers are committed, in order to allow the adapter to manipulate them.

The adapt() method of the input stream adapter is called after the response

status code and the headers are received in order to allow the adapter to

behave accordingly.

Apache Wink 0.1 User Guide

96

14.9.4. Stream Adapters Example

The following example demonstrates how to implement input and output

adapters.

Gzip Handler

public class GzipHandler implements ClientHandler {

 public ClientResponse handle(ClientRequest request,

 HandlerContext context) {

 request.getHeaders().add("Accept-Encoding", "gzip");

 context.addInputStreamAdapter(new GzipInputAdapter());

 context.addOutputStreamAdapter(new GzipOutputAdapter());

 return context.doChain(request);

 }}

Gzip Input Stream Adapter

class GzipInputAdapter implements InputStreamAdapter{

 public InputStream adapt(InputStream is,

 ClientResponse response) {

 String header = response.getHeaders().getFirst("Content-Encoding");

 if (header != null && header.equalsIgnoreCase("gzip")) {

 return new GZIPInputStream(is);

 }

 return is;

 }}

Gzip Output Stream Adapter

class GzipOutputAdapter implements OutputStreamAdapter {

 public OutputStream adapt(OutputStream os,

 ClientRequest request) {

 request.getHeaders().add("Content-Encoding", "gzip");

 return new GZIPOutputStream(os);

 }}

Explanation

The Gzip handler creates instances of the GzipInputAdapter and the

GzipOutputAdapter and adds them to the stream adapters of the current

request by invoking the addInputStreamAdapter() and

addOutputStreamAdapter() on the HandlerContext instance.

	Apache Wink User Guide
	Table of Contents
	List of Tables
	Introduction
	Important Note
	Target Audience
	JAX-RS Compliancy

	Apache Wink Architecture
	Wink Runtime Architecture Overview
	Request Processor
	Deployment Configuration
	Customization

	Handler Chains
	Registries
	Resources Registry
	Providers Registry

	Registration and Configuration
	Simple Application
	Specifying the Simple Application File Location

	Wink Application
	Dynamic Resources
	Motivation
	Usage
	Scope

	Priorities
	Resource Priorities
	Provider Priorities

	Properties
	Custom Properties File Definition

	Runtime Registration
	Media-Type Mapping
	Customizing Mappings

	Alternative Shortcuts
	Customizing Shortcuts

	Link Builders
	Link Builders Overview
	The “alt” Query Parameter
	System Links Builder
	Example

	Single Link Builder
	Generating Absolute or Relative Links

	Assets
	Assets Overview
	Lifecycle
	Response Entity Asset
	Request Entity Asset

	Asset Entity Methods
	Entity Producing Methods
	Entity Consuming Methods

	Parameters
	Return Type
	Exceptions
	Annotation Inheritance
	Entity Method Matching
	Request Entity Matching
	Response Entity Matching

	Asset Example

	Providers
	Scoping
	Prototype Example
	Singleton Example 1
	Singleton Example 2

	Priority
	Out-of-the-Box Implementations
	Atom Providers
	APP Providers
	OpenSearch Provider
	Json Providers
	Asset Provider
	HTML Providers
	CSV Providers

	Annotations
	@Workspace Annotation
	@Workspace Annotation Example

	@Asset Annotation
	@Scope Annotation
	Resource Example
	Provider Example

	@Parent Annotation

	Resource Matching - Continued Search
	Resource Matching Overview
	Configuration

	Data Models
	JAXB
	JSON
	Syndication
	Atom
	Atom Publishing Protocol (APP)
	Comma Separated Values (CSV)
	OpenSearch

	APP Service Document
	Enabling the APP Service Document Auto Generation
	Adding Resources to APP Service Document
	Example

	APP Service Document HTML Styling
	Implementation

	Spring Integration
	Spring Registration
	Spring Context Loading
	Registering Resources and Providers

	Custom Properties File Definition
	Customizing Media-Type Mappings
	Customizing Alternative Shortcuts
	External Properties File
	Spring Context File

	WebDAV Extension
	WebDAV Data Model
	WebDAV Classes
	WebDAVModelHelper
	WebDAVResponseBuilder

	Resource Method Definition
	Creating a Multistatus Response
	Using WebDAVResponseBuilder
	WebDAVResponseBuilder Example
	Manual Creation

	Handler Chains
	Handlers
	Message Context
	Request Handler Chain
	System Request Handlers
	User Request Handlers

	Response Handler Chain
	System Response Handlers
	User Response Handlers

	Error Handler Chain
	System Error Handlers
	User Error Handlers

	Request Processing

	Wink Client
	This chapter contains the following sections
	Wink Client Overview
	Dependencies
	Main Features
	High Level Architecture Overview
	Getting Started with the Wink Client
	GET Request
	POST Request
	POST Atom Request
	Using ClientResponse

	Client Configuration
	Important Note
	Handler Configuration
	Apache Http Client Configuration
	Custom Provider Configuration

	Client Handlers
	Custom Handlers
	Custom Handler Implementation
	Input and Output Stream Adapters
	Stream Adapters Example

