
Ready, Set, Go – Getting started with Tuscany

Install the Tuscany Distribution
Create a folder (we call it Tuscany in this doc) on your disk into which you will download the
TUSCANY distribution. Download the latest distribution from this URL (We use nightly for this
exercise since this example requires code that is in the trunk until post .91 release becomes
available):

Nightly Build - http://cwiki.apache.org/TUSCANY/tuscany-downloads-documentations.html

Download both the bin zip as well as the src zip (if available) to the folder that you created on
your disk and unzip the bin zip in place, you should see the following folder file structure on your
disk after unzip is complete.

Setup Eclipse for Tuscany
Start Eclipse and create a User Library to contain the TUSCANY runtime jar’s as well as their
depending jar’s following the following steps:

From the menu bar select Window and then Preferences. The Preferences dialog will appear, in
its left navigation tree select Java, followed by Build Path, and followed by User Libraries. Select
the New pushbutton on the right of the New Libraries dialog to create a new user library.

The user library created is empty, select the Add JARs pushbutton on the right to add all the jar’s
from your Tuscany installation lib folder. When completed all the jar’s will appear under the
TUSCANY user library.

- define a new userlibrary for tuscany

http://cwiki.apache.org/TUSCANY/tuscany-downloads-documentations.html

Setup for Debugging in Eclipse

Attach the Tuscany source to the Tuscany runtime jar in the following step. You do need to use the
same source as where the binary is from. Please note that we are using this as an example to
show how it is done since the nightly build does not have source zip file available yet.
In the User Libraies dialog scroll down until you see the Tuscany runtime jar and select its
Source attachment.

Select the Edit pushbutton on the right and in the Edit dialog use the External File pushbutton to
the select the Tuscany src zip that we downloaded earlier.

Select OK to complete this and the Preferences dialog. You are done with the Tuscany setup for
Eclipse.

Create your 1st Composite Service Application

The following shows the composition diagram for the composite service application you are about
to create.

store

Store

ShoppingCart

Catalog
Currency
Converter

http

jsonrpc jsonrpc

currencyCode=USD

The composite service application you will create is a composition of four services. The composed
service provided is that of an on-line store.

There is a Catalog service which you can ask for catalog items, and depending on its currency
code property configuration it will provide the item prices in USD or EUR. The Catalog service is not
doing the currency conversion itself it references a CurrencyConverter service to do that task. Then
there is the ShoppingCart service into which items chosen from the catalog can be added. Both the
Catalog and the ShoppingCart service are bound with a JSONRPC binding. Finally there is the
Store user facing service that provides the browser based user interface of the store. The Store
service makes use of the Catalog and ShoppingCart service using the JSONRPC binding.

Create a Java Project For Composite Service
In this step you create a Java Project in Eclipse to hold the composite service application.
1. Click on the New Java Project button in the toolbar to launch the project creation dialog.

2. Enter “store” as the Project name, and for Project Layout select Create separate folders for
sources and class files.

Hit the Next button, and on the following page go to the Libraries tab. Use the Add Library
button on the right to add the TUSCANY user library to the project.

Hit the Finish button to complete the New Java Project dialog and complete creation of the
“store” java project.

Construct Services
First you create two package folders into which later in this step you place service implementations.

Select the “store” project and click on the New Java Package button in the toolbar to launch

the package creation dialog.

Next you enter “services” as the package Name, and press the Finish button to complete the
dialog.

Repeat the previous step to create another package named “ufservices”. The store project now
should look as follows.

In this exercise you will place in the “services” package the regular services, and in the “ufservices”
package the user facing services of the composite service application you create.

Catalog

In this step you create the Catalog service interface and implementation.

Select the “services” package. Next you click on the dropdown arrow next to the New Java Class
button and select the New Java Interface option from the dropdown list. In the dialog

enter “Catalog” as the Name of the interface and select the Finish button to complete the dialog.

The Java editor will open on the new created Java interface. Replace the content of the editor by
copy-paste of the following Java interface code snippet.

package services;

import org.osoa.sca.annotations.Remotable;

@Remotable
public interface Catalog {

String[] get();
}

Select the “services” package again. Select the New Java Class button . In the dialog enter
“CatalogImpl” as the Name of the class, add “Catalog” as the interface this class implements, and
then select Finish to complete the dialog.

The Java editor will open on the new created Java class. Replace the content of the editor by
copy-paste of the following Java class code snippet.

package services;

import java.util.ArrayList;
import java.util.List;

import org.osoa.sca.annotations.Init;
import org.osoa.sca.annotations.Property;
import org.osoa.sca.annotations.Reference;

public class CatalogImpl implements Catalog {

@Property
public String currencyCode = "USD";
@Reference
public CurrencyConverter currencyConverter;

private List<String> catalog = new ArrayList<String>();

@Init
public void init() {

String currencySymbol = currencyConverter.getCurrencySymbol(currencyCode);
catalog.add("Apple - " + currencySymbol +

currencyConverter.getConversion("USD", currencyCode, 2.99f));
catalog.add("Orange - " + currencySymbol +

currencyConverter.getConversion("USD", currencyCode, 3.55f));
catalog.add("Pear - " + currencySymbol +

currencyConverter.getConversion("USD", currencyCode, 1.55f));
}

public String[] get() {
String[] catalogArray = new String[catalog.size()];
catalog.toArray(catalogArray);
return catalogArray;

}
}

After completing these steps the content of the “store” project will look as follows.

Note: CatalogImpl is red x’ed because it makes use of the CurrencyConverter interface that we
have not implemented yet.

CurrencyConverter

In this step you create the CurrencyConverter service interface and implementation.

You follow the same steps that you learned previously to create the interface and implementation.

First create a Java interface in the “services” package named “CurrencyConverter” and copy-
paste the following Java interface code snippet into it.

package services;

import org.osoa.sca.annotations.Remotable;

@Remotable
public interface CurrencyConverter {

public float getConversion(String fromCurrenycCode,
String toCurrencyCode, float amount);

public String getCurrencySymbol(String currencyCode);
}

Next create a Java class in the “services” package named “CurrencyConverterImpl” and copy-
paste the following Java class code snippet into it.

package services;

public class CurrencyConverterImpl implements CurrencyConverter {

public float getConversion(String fromCurrencyCode,
String toCurrencyCode, float amount) {

if (toCurrencyCode.equals("USD"))

return amount;
else
if (toCurrencyCode.equals("EUR"))

return amount*0.7256f;
return 0;

}

public String getCurrencySymbol(String currencyCode) {
if (currencyCode.equals("USD"))

return "$";
else
if (currencyCode.equals("EUR"))

return "€";
return "?";

}
}

After completing these steps the content of the “store” project will look as follows.

ShoppingCart

In this step you create the ShoppingCart service interface and implementation.

You follow the same steps that you learned previously to create the interface and implementation.

First create a Java interface in the “services” package named “ShoppingCart” and copy-paste the
following Java interface code snippet into it.

package services;

import org.osoa.sca.annotations.Conversational;
import org.osoa.sca.annotations.Remotable;

@Remotable
//@Conversational
public interface ShoppingCart {

void add(String[] items);
void empty();
String[] get();
String getTotal();

}

Next create a Java class in the “services” package named “ShoppingCartImpl” and copy-paste the
following Java class code snippet into it.

package services;

import java.util.ArrayList;

import java.util.List;

import org.osoa.sca.annotations.Scope;

//@Scope("CONVERSATION")
public class ShoppingCartImpl implements ShoppingCart {

// the following needs to change to instance var ones conversation scope works
private static List<String> cart = new ArrayList<String>();

public void add(String[] items) {
for (String item : items) cart.add(item);

}

public void empty() {
cart.clear();

}

public String[] get() {
String[] cartArray = new String[cart.size()];
cart.toArray(cartArray);
return cartArray;

}

public String getTotal() {
float total = 0;
String currencySymbol = "";
if (!cart.isEmpty()) currencySymbol =

cart.get(0).substring(cart.get(0).indexOf("-")+2, cart.get(0).indexOf("-")+3);
for (String item : cart) total +=

Float.valueOf(item.substring(item.indexOf("-")+3));
return currencySymbol + String.valueOf(total);

}
}

Note: Since the Tuscany conversational support is not ready yet the cart is realized through a hack.
The cart field is defined as static.

After completing these steps the content of the “store” project will look as follows.

Store

In this step you create the user facing Store service that will run in a Web browser and provide the
user interface to the other services you created.

Select the “ufservices” package. Right click to get the context menu, select New, and then File. In
the New File dialog enter “store.html” for the File name, and then select Finish to complete the
dialog.

The Text editor will open on the new created html file. Replace the content of the editor by copy-
paste of the following html snippet.

<html>
<head>

<title>Store</TITLE>

<script type="text/javascript" src="jsonrpc.js"></script>
<script language="JavaScript">

catalog = (new JSONRpcClient("../SCADomain/Catalog")).Catalog;
shoppingCart = (new

JSONRpcClient("../SCADomain/ShoppingCart")).ShoppingCart;

function catalog_getResponse(items) {
var catalog = "";
for (var i=0; i<items.length; i++)

catalog += '<input name="items" type="checkbox" value="' +
items[i] + '">' + items[i]+ '
';

document.getElementById('catalog').innerHTML=catalog;
}
function shoppingCart_addResponse(result) {

shoppingCart.get(shoppingCart_getResponse);
shoppingCart.getTotal(shoppingCart_getTotalResponse);

}
function shoppingCart_getResponse(items) {

var shoppingCart = "";
for (var i=0; i<items.length; i++)

shoppingCart += items[i] + '
';
document.getElementById('shoppingCart').innerHTML=shoppingCart;

}
function shoppingCart_getTotalResponse(total) {

document.getElementById('total').innerHTML="Total : " + total;
}

function addToCart() {
var items = document.catalogForm.items;
var addItems = new Array();
var j = 0;
for (var i=0; i<items.length; i++)

if (items[i].checked) {
addItems[j++] = items[i].value;
items[i].checked = false;

}
shoppingCart.add(addItems, shoppingCart_addResponse);

}
function checkout() {

document.getElementById('store').innerHTML='<h2>Thanks for Shopping
With Us!</h2>'+

'<h2>Your Order</h2>'+
 '<form name="orderForm" action="/ufs/store.html">'+

document.getElementById('shoppingCart').innerHTML+
'
'+
document.getElementById('total').innerHTML+
'
'+
'
'+
'<input type="submit" value="Continue

Shopping">'+
'</form>';

shoppingCart.empty();
}
function empty() {

shoppingCart.empty();
document.getElementById('shoppingCart').innerHTML="";
document.getElementById('total').innerHTML="";

}

catalog.get(catalog_getResponse);
 </script>

<link rel="stylesheet" type="text/css" href="style.css" />
</head>

<body>
<h1>Store</h1>
 <div id="store">
 <h2>Catalog</h2>
 <form name="catalogForm">

<div id="catalog" ></div>

<input type="button" onClick="addToCart()" value="Add to Cart">

 </form>

 <h2>Your Shopping Cart</h2>
 <form name="shoppingCartForm">

<div id="shoppingCart"></div>

<div id="total"></div>

<input type="button" onClick="checkout()" value="Checkout">
<input type="button" onClick="empty()" value="Empty">

</form>
 </div>
</body>
</html>

Next select the “ufservices” package again. Right click to get the context menu, select New, and
then File. In the New File dialog enter “jsonrpc.js” for the File name, and then select Finish to
complete the dialog.

The Text editor will open on the new created javascript file. Replace the content of the editor by
copy-paste of the javascript snippet you find here:
https://svn.apache.org/repos/asf/incubator/tuscany/java/sca/modules/binding-
jsonrpc/src/main/resources/org/apache/tuscany/sca/binding/jsonrpc/jsonrpc.js

Note: That we have to have the jsonrpc.js local in our project is only temporary, so this step will be
removed in the future.

After completing these steps the content of the “store” project will look as follows.

https://svn.apache.org/repos/asf/incubator/tuscany/java/sca/modules/binding-jsonrpc/src/main/resources/org/apache/tuscany/sca/binding/jsonrpc/jsonrpc.js
https://svn.apache.org/repos/asf/incubator/tuscany/java/sca/modules/binding-jsonrpc/src/main/resources/org/apache/tuscany/sca/binding/jsonrpc/jsonrpc.js

Compose Services
Now that you have all the required service implementations you compose them together to provide
the store composite service. The composition is stored in a .composite file.

Select the “src” folder of the “store” project. Right click to get the context menu, select New, and
then File. In the New File dialog enter “store.composite” for the File name, and then select Finish
to complete the dialog.

The Text editor will open on the new created composite file. Replace the content of the editor by
copy-paste of the following composite snippet.

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" xmlns:s="http://store"

name="store">

 <service name="ufs" promote="ufs">
 <binding.resource/>
 </service>
 <component name="ufs">
 <implementation.resource location="ufservices"/>
 </component>

 <service name="Catalog" promote="Catalog">
 <binding.jsonrpc/>
 </service>
 <component name="Catalog">
 <implementation.java class="services.CatalogImpl"/>
 <property name="currencyCode">USD</property>
 <reference name="currencyConverter" target="CurrencyConverter"/>
 </component>

 <service name="ShoppingCart" promote="ShoppingCart">
 <binding.jsonrpc/>
 </service>
 <component name="ShoppingCart">
 <implementation.java class="services.ShoppingCartImpl"/>
 </component>

 <component name="CurrencyConverter">
 <implementation.java class="services.CurrencyConverterImpl"/>
 </component>

</composite>

After completing these steps the content of the “store” project will look as follows.

Launch Services
In this step you create the code to launch the Tuscany runtime with the new store composite
service you created.
Select the “store” project and click on the New Java Package button in the toolbar to start the

package creation dialog. Use the dialog to create a new package named “launch”.

Select the “launch” package. Select the New Java Class button . In the dialog enter “Launch”
as the Name of the class, check the checkbox for creating a main method stub, and then select
Finish to complete the dialog.

The Java editor will open on the new created Java class. Replace the content of the editor by
copy-paste of the following Java class code snippet.

package launch;

import org.apache.tuscany.sca.host.embedded.SCADomain;

public class Launch {
 public static void main(String[] args) throws Exception {

 System.out.println("Starting ...");
 SCADomain scaDomain = SCADomain.newInstance("store.composite");
 System.out.println("store.composite ready for big business !!!");
 System.out.println();
 }
}

After completing these steps the content of the “store” project will look as follows.

Congratulations you completed your 1st composite service applications, now its time to run it!

Use Services
In this step you launch and use the store composite service application you created.

First select the “Launch” class in the “launch” package of your “store” project. Right click to get the
context menu, select Run As, and then Java application. The Tuscany runtime will start up adding
the store composition to its domain.

The Eclipse console will show the following messages.

Next Launch your Web browser and enter the following address:
http://localhost:8080/ufs/store.html

http://localhost:8080/web/store.html

You get to the Store user facing service of the composite service application.

You can select items from the Catalog and add them to your Shopping Cart.

And you can Checkout to complete your order.

Explore the Samples from the Tuscany Distribution
The sample folder of the Tuscany distribution provides a rich set of samples ready for you to
explore.

In Eclipse create a New Java Project, specify the project name, select Create project from
existing source, and specify the folder that contains the sample source.

Use Next to get to the next page in the New Java Project dialog. There go to the Libraries tab,
use the “Add Library… pushbutton to add the JUnit library and the user library TUSCANY.

…

Finish the New Java Project dialog. You now have the sample project available in the Eclipse
workbench.

For the calculator sample that we’ve chosen go to its CalculatorClient class and select Run As –
> Java Application. You will see the following output in the console.

	Ready, Set, Go – Getting started with Tuscany
	Install the Tuscany Distribution
	Setup Eclipse for Tuscany
	Setup for Debugging in Eclipse
	Create your 1st Composite Service Application
	Create a Java Project For Composite Service
	Construct Services
	Catalog
	CurrencyConverter
	ShoppingCart
	Store

	Compose Services
	Launch Services
	Use Services

	
	Explore the Samples from the Tuscany Distribution

