
Flume Developer Guide

version 1.2.0

Apache Flume

July 23, 2012

Contents
Flume 1.2.0 Developer Guide 1

Introduction 1

Overview 1

Architecture 1

Data flow model 1

Reliability 1

Building Flume 1

Getting the source 1

Compile/test Flume 2

Developing custom components 2

Client 2

Client SDK 2

RPC Client interface 2

Avro RPC Client 2

Failover handler 3

Transaction interface 3

Sink 4

Source 5

Channel 6

Flume 1.2.0 Developer Guide

Introduction

Overview
Apache Flume is a distributed, reliable, and available system for efficiently collecting, aggregating and moving large
amounts of log data from many different sources to a centralized data store.

Apache Flume is a top level project at the Apache Software Foundation. There are currently two release code lines
available, versions 0.9.x and 1.x. This documentation applies to the 1.x codeline. Please click here for the Flume
0.9.x Developer Guide.

Architecture

Data flow model

A unit of data flow is called event which is a byte payload that is accompanied by an optional set of string attributes.
Flume agent is a process (JVM) that hosts the components that flows events from an external source to next
destination.

A source consumes events delivered to it by an external source like web server in a specific format. For example, an
Avro source can be used to receive Avro events from clients or other agents in the flow. When a source receives an
event, it stores it into one or more channels. The channel is a passive store that keeps the event until its consumed
by a sink. An example of channel is the JDBC channel that uses a file-system backed embedded database. The sink
removes the event from channel and puts it into an external repository like HDFS or forwards it to the source in next
hop of the flow. The source and sink within the given agent run asynchronously with the events staged in the
channel.

Reliability

The events are staged in the channel on each agent. Then they are delivered to the next agent or terminal
repository (like HDFS) in the flow. The events are removed from the channel only after they are stored in the
channel of next agent or in the terminal repository. This is a how the single-hop message delivery semantics in
Flume provide end-to-end reliability of the flowFlume uses transactional approach to guarantee the reliable delivery
of the events. The sources and sinks encapsulate the store/retrieval of the events in a transaction provided by the
channel. This ensures that the set of events are reliably passed from point to point in the flow. In case of multi hop
flow, the sink on previous hop and source on next hop both have their transactions running to ensure that the data is
safely stored in the channel of the next hop.

Building Flume

Getting the source

Check out the code using Subversion. Click here for the SVN repository root.

The Flume 1.x development happens under the branch "trunk" so this command line can be used:

svn checkout http://svn.apache.org/repos/asf/flume/trunk flume-trunk

Alternatively, if you prefer using Git, you may use:

git clone git://git.apache.org/flume.git
cd flume
git checkout trunk

Flume 1.2.0 Developer Guide

1

http://archive.cloudera.com/cdh/3/flume/DeveloperGuide/
http://archive.cloudera.com/cdh/3/flume/DeveloperGuide/
http://svn.apache.org/repos/asf/flume/

Compile/test Flume

The Flume build is mavenized. You can compile Flume using the standard Maven commands:

1. Compile only: mvn clean compile

2. Compile and run unit tests: mvn clean test

3. Run individual test(s): mvn clean test -Dtest=<Test1>,<Test2>,... -DfailIfNoTests=false

4. Create tarball package: mvn clean install

5. Create tarball package (skip unit tests): mvn clean install -DskipTests

Developing custom components

Client

The client operates at the point of origin of events and delivers them to a Flume agent. Clients typically operate in
the process space of the application they are consuming data from. Currently flume supports Avro, log4j and syslog
as ways to transfer data from remote source. Additionally there’s an Exec source that can consume the output of a
local process as input to Flume.

It’s quite possible to have a use case where these existing options are not sufficient. In this case you can build a
custom mechanism to send data to Flume. There are two ways of achieving this. First is to create a custom client
that communicates to one of the flume’s existing sources like Avro or syslog. Here the client should convert it’s data
into messages understood by these Flume sources. The other option is to write a custom Flume source that directly
talks to your existing client application using some IPC or RPC protocols, and then convert the data into flume
events to send it upstream.

Client SDK

Though flume contains a number of built in mechanisms to ingest data, often one wants the ability to communicate
with flume directly from a custom application. The Client SDK is a library that enables applications to connect to
Flume and send data into Flume’s data flow over RPC.

RPC Client interface

The is an interface to wrap the user data data and attributes into an Event, which is Flume’s unit of flow. This
encapsulates the RPC mechanism supported by Flume. The application can simply call append() or
appendBatch() to send data and not worry about the underlying message exchanges.

Avro RPC Client

As of Flume 1.1.0, Avro is the only support RPC protocol. The NettyAvroRpcClient implements the
RpcClient interface. The client needs to create this object with the host and port of the Flume agent and use it to
send data into flume. The following example shows how to use the Client SDK API:

import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.FlumeException;
import org.apache.flume.api.RpcClient;
import org.apache.flume.api.RpcClientFactory;
import org.apache.flume.event.EventBuilder;

public void myInit () {
 // setup the RPC connection to Flume agent at hostname/port
 RpcClient rpcClient = RpcClientFactory.getDefaultInstance(hostname, port);
 ...
}

public void sendDataToFlume(String data) {
 // Create flume event object
 Event event = EventBuilder.withBody(data, Charset.forName("UTF-8"));

Flume 1.2.0 Developer Guide

2

 try {
 rpcClient.append(event);
 } catch (EventDeliveryException e) {
 // clean up and recreate rpcClient
 rpcClient.close();
 rpcClient = null;
 rpcClient = RpcClientFactory.getDefaultInstance(hostname, port);
 }
 ...
}

public void cleanUp () {
 // close the rpc connection
 rpcClient.close();
 ...
}

Failover handler

This class wraps the Avro RPC client to provide failover handling capability to clients. This takes a list of host/ports
of the Flume agent. If there’s an error in communicating the current agent, then it automatically falls back to the next
agent in the list:

// Setup properties for the failover
Properties props = new Properties();
props.put("client.type", "default_failover");

// list of hosts
props.put("hosts", "host1 host2 host3");

// address/port pair for each host
props.put("hosts.host1", host1 + ":" + port1);
props.put("hosts.host1", host2 + ":" + port2);
props.put("hosts.host1", host3 + ":" + port3);

// create the client with failover properties
client = (FailoverRpcClient);
RpcClientFactory.getInstance(props);

Transaction interface

The Transaction interface is the basis of reliability for Flume. All the major components ie. sources, sinks and
channels needs to interface with Flume transaction.

Flume 1.2.0 Developer Guide

3

The transaction interface is implemented by a channel implementation. The source and sink connected to channel
obtain a transaction object. The sources actually use a channel selector interface that encapsulate the transaction
(discussed in later sections). The operations to stage or extract an event is done inside an active transaction. For
example:

Channel ch = ...
Transaction tx = ch.getTransaction();
try {
 tx.begin();
 ...
 // ch.put(event) or ch.take()
 ...
 tx.commit();
} catch (ChannelException ex) {
 tx.rollback();
 ...
} finally {
 tx.close();
}

Here we get hold of a transaction from a channel. After the begin method is executed, the event is put in the channel
and transaction is committed.

Sink

The purpose of a sink to extract events from the channel and forward it to the next Agent in the flow or store in an
external repository. A sink is linked to a channel instance as per the flow configuration. There’s a sink runner thread
that’s get created for every configured sink which manages the sink’s lifecycle. The sink needs to implement
start() and stop() methods that are part of the LifecycleAware interface. The start() method should
initialize the sink and bring it to a state where it can forward the events to its next destination. The process()
method from the Sink interface should do the core processing of extracting the event from channel and forwarding
it. The stop() method should do the necessary cleanup. The sink also needs to implement a Configurable
interface for processing its own configuration settings:

// foo sink
public class FooSink extends AbstractSink implements Configurable {
 @Override
 public void configure(Context context) {
 some_Param = context.get("some_param", String.class);
 // process some_param …
 }

Flume 1.2.0 Developer Guide

4

 @Override
 public void start() {
 // initialize the connection to foo repository ..
 }
 @Override
 public void stop () {
 // cleanup and disconnect from foo repository ..
 }
 @Override
 public Status process() throws EventDeliveryException {
 // Start transaction
 ch = getChannel();
 tx = ch.getTransaction();
 try {
 tx.begin();
 Event e = ch.take();
 // send the event to foo
 // foo.some_operation(e);
 tx.commit();
 sgtatus = Status.READY;
 (ChannelException e) {
 tx.rollback();
 status = Status.BACKOFF;
 } finally {
 tx.close();
 }
 return status;
 }
 }
}

Source

The purpose of a Source is to receive data from an external client and store it in the channel. As mentioned above,
for sources the Transaction interface is encapsulated by the ChannelSelector. Similar to SinkRunner,
there’s a SourceRunner thread that gets created for every configured source that manages the source’s lifecycle.
The source needs to implement start() and stop() methods that are part of the LifecycleAware interface.
There are two types of sources, pollable and event-driven. The runner of pollable source runner invokes a
process() method from the pollable source. The process() method should check for new data and store it in
the channel. The event driver source needs have its own callback mechanism that captures the new data:

// bar source
public class BarSource extends AbstractSource implements Configurable, EventDrivenSource{
 @Override
 public void configure(Context context) {
 some_Param = context.get("some_param", String.class);
 // process some_param …
 }
 @Override
 public void start() {
 // initialize the connection to bar client ..
 }
 @Override
 public void stop () {
 // cleanup and disconnect from bar client ..
 }
 @Override
 public Status process() throws EventDeliveryException {
 try {
 // receive new data

Flume 1.2.0 Developer Guide

5

 Event e = get_some_data();
 // store the event to underlying channels(s)
 getChannelProcessor().processEvent(e)
 } catch (ChannelException ex) {
 return Status.BACKOFF;
 }
 return Status.READY;
 }
}

Channel

TBD

Flume 1.2.0 Developer Guide

6

	Flume 1.2.0 Developer Guide
	Introduction
	Overview
	Architecture
	Data flow model
	Reliability

	Building Flume
	Getting the source
	Compile/test Flume

	Developing custom components
	Client
	Client SDK
	RPC Client interface
	Avro RPC Client
	Failover handler

	Transaction interface
	Sink
	Source
	Channel

